

Hexapod

Cost-Effective Hexapod

H-820

- Travel range ±50 mm / ±50 mm / ±25 mm
- Rotation range ±15° / ±15° / ±30°
- Minimum incremental motion 5 μm / 5 μm / 5 μm
- Payload 20 kg

Standard-class 6-axis positioning system

Parallel-kinematic design for 6 degrees of freedom, making it significantly more compact and stiff than serial-kinematic systems, higher dynamics, no moved cables: higher reliability, reduced friction

BLDC motor

Brushless DC motors are particularly suitable for high rotational speeds. They can be controlled very accurately and ensure high precision. Because they dispense with sliding contacts, they run smoothly, are wear-free and therefore achieve a long lifetime.

Indirect measuring principle

Rotary encoder on motor shaft

PIVirtualMove

The simulation software simulates the limits of the workspace and payload of a hexapod. Therefore, even before purchasing, you can check whether a particular hexapod model can handle the loads, forces, and torques occurring in an application. For this purpose, the simulation tool takes the position and motion of the hexapod as well as the pivot point and several reference coordinate systems into account.

Application fields

Industry and research. For life science, biotechnology, automation, micromachining

\mathbf{PI}

Motion	Unit	H-820.D2
Active axes		X Y Z θX θY θZ
Travel range in X	mm	±50
Travel range in Y	mm	±50
Travel range in Z	mm	±25
Rotation range in θX	•	±15
Rotation range in θY	0	±15
Rotation range in θZ	•	±30
Maximum velocity in X	mm/s	20
Recommended velocity in X	mm/s	2
Maximum velocity in Y	mm/s	20
Recommended velocity in Y	mm/s	2
Maximum velocity in Z	mm/s	20
Recommended velocity in Z	mm/s	2
Maximum angular velocity in θX	mrad/s	200
Recommended angular velo- city in θX	mrad/s	20
Maximum angular velocity in θY	mrad/s	200
Recommended angular velocity in $\boldsymbol{\theta} \boldsymbol{Y}$	mrad/s	20
$\begin{array}{l} Maximum \ angular \ velocity \ in \\ \theta Z \end{array}$	mrad/s	200
Recommended angular velocity in $\boldsymbol{\theta} \boldsymbol{Z}$	mrad/s	20

Positioning	Unit	Tolerance	H-820.D2
Minimum incremental moti- on in X	μm	Тур.	5
Minimum incremental moti- on in Y	μm	Тур.	5
Minimum incremental moti- on in Z	μm	Тур.	5
Minimum incremental motion in $\boldsymbol{\theta}\boldsymbol{X}$	μrad	Тур.	12.5
Minimum incremental motion in θY	μrad	Тур.	12.5
Minimum incremental motion in $\boldsymbol{\theta} \boldsymbol{Z}$	μrad	Тур.	12.5
Unidirectional repeatability in X	μm	Тур.	±1.5
Unidirectional repeatability in Y	μm	Тур.	±1.5
Unidirectional repeatability in Z	μm	Тур.	±0.5
Unidirectional repeatability in θX	μrad	Тур.	±8
Unidirectional repeatability in θY	μrad	Тур.	±8
Unidirectional repeatability in θZ	μrad	Тур.	±25
Backlash in X	μm	Тур.	30
Backlash in Y	μm	Тур.	30
Backlash in Z	μm	Тур.	3
Backlash in θX	μrad	Тур.	30
Backlash in θY	μrad	Тур.	30
Backlash in θΖ	μrad	Тур.	300
Integrated sensor			Incremental rotary encoder

Drive Properties	Unit	H-820.D2
Drive type		Brushless DC motor
Nominal voltage	V	24

Mechanical Properties	Unit	H-820.D2
Maximum load capacity, ba- se plate in any orientation	kg	10
Maximum load capacity, ba- se plate horizontal	kg	20
Maximum holding force, ba- se plate in any orientation	N	5
Maximum holding force, ba- se plate horizontal	N	200
Overall mass	kg	15
Material		Aluminum

Miscellaneous	Unit	H-820.D2
Operating temperature ran- ge	°C	0 to 50
Connector for data transmis- sion		HD D-sub 78 (m)
Connector for supply voltage		M12 4-pole (m)
Recommended controllers/ drivers		C-887.5x

Connecting cables are not included in the scope of delivery and must be ordered separately.

When measuring position specifications, typical velocity is used. The data is included in the delivery of the product in the form of a measurement report and is stored at PI. The maximum travel ranges of the individual coordinates (X, Y, Z, θ X, θ Y, θ Z) are interdependent. The data for each axis shows its maximum travel range when all other axes are in the zero position of the nominal travel range and the default coordinate system is in use, or rather when the pivot point is set to 0,0,0.

At Pl, technical data is specified at 22 ±3 °C. Unless otherwise stated, the values are for unloaded conditions. Some properties are interdependent. The designation "typ." indicates a statistical average for a property; it does not indicate a guaranteed value for every product supplied. During the final inspection of a product, only selected properties are analyzed, not all. Please note that some product characteristics may deteriorate with increasing operating time.

Drawings / Images

Maximum loads on the H-820.D2 when mounted horizontally

Drawings / Images

Maximum loads on the H-820.D2 when mounted at the most unfavorable angle

Maximum loads on the H-820.D2 when mounted vertically

Maximum permissible force acting on the H-820.D2 when mounted horizontally

Drawings / Images

H-820.D2, dimensions in mm, at zero position of nominal travel range

Order Information

H-820.D2

Hexapod, basic model; 20 kg payload; 20 mm/s maximum velocity; D-sub connector. Connecting cables are not included in the scope of delivery and must be ordered separately.