
C 

GCS Array Data Format Description 

Release: 1.2.1 Date: 2010-09-27 

The described data format is that used by 
the PI General Command Set (GCS).

 

 
 

 info@pi.w

© Physik Instrumente (PI) GmbH & Co. KG 
Auf der Römerstr. 1 ⋅ 76228 Karlsruhe, Germany 

 Tel. +49-721-4846-0 ⋅ Fax: +49-721-4846-299 
s ⋅ www.pi.ws 



GCS Array Data Format Software Manual SM 146E 

Table of Contents 

0. Manufacturer Declarations .............................................. 2 
0.1. Disclaimer .................................................................................... 2 

1. Introduction....................................................................... 3 

2. Conventions...................................................................... 3 

3. Header ............................................................................... 4 
3.1. Description ................................................................................... 4 
3.2. Keywords ..................................................................................... 5 

4. Values and units ............................................................... 6 

5. Data.................................................................................... 7 
5.1. Matrix Data................................................................................... 7 

5.1.1. Description ................................................................................... 7 
5.1.2. Order of Data ............................................................................... 9 

5.2. Table Data ................................................................................. 10 
5.2.1. Description ................................................................................. 10 
5.2.2. Time Series................................................................................ 10 
5.2.3. Order of Data ............................................................................. 11 

 
©  Copyright 2010 by Physik Instrumente (PI) GmbH & Co. KG 

Release: 1.2.1
File:GCSData_User_SM146E.doc, 207872 Bytes 

0. Manufacturer Declarations 
The contents of the manual is furnished for informational use only, is subject to 
change without notice and should not be construed as a commitment by Physik 
Instrumente (PI). 
Physik Instrumente (PI) assumes no responsibility or liability for any errors or 
inaccuracies that may appear in this manual. 

0.1. Disclaimer 
Physik Instrumente (PI) does not guarantee that this data format description is free 
of errors and will not be responsible for any damage arising from its use. 

Physik Instrumente (PI) expressly disclaims any and all warranties including any 
implied warranty of merchantability and fitness for a particular purpose. Physik 
Instrumente (PI) does not warrant, guarantee, or make any obligations regarding 
the use or the results of the use of this data format, in terms of correctness, 
accuracy, reliability or otherwise. The user agrees to use this data format on his 
own responsibility. 

Release 1.2.1 www.pi.ws Page 2 



GCS Array Data Format Software Manual SM 146E 

1. Introduction 
The PI General Command Set (GCS) is common to most PI piezo and motor 
controllers, and is designed for multi-axis operation. This greatly reduces the effort 
required to produce custom programs, especially in environments which include a 
number of different controllers. PI offers GCS-compatible user-interface software 
as well as LabView™ and other driver sets. 
The GCS Array data format was defined to enable the exchange of complex data 
between controllers and/or user interface software. The format provides for 
transfer of n-dimensional data arrays as well as meta-information about the data 
transmitted (for example the name of the data source and, optionally, user-
provided or application-specific remarks). 

2. Conventions 
The GCS Array data specification defines the conversion of an n-dimensional array 
of numeric values to an ASCII stream called a dataset. One or more datasets can 
be stored in a file and/or transmitted over an interface such as RS-232 or GPIB. 
Any extension may be used in GCS Array filenames, except extensions reserved 
for other uses. See the manuals for the appropriate controller and software for 
detailed information on how to save data in GCS Array format.  
A dataset always consists of a header followed by data and is almost self-
explanatory, since the GCS Array data format is based on plain ASCII. The first 
character of each line belonging to the header is “#”. The first line not starting with 
“#” marks the end of the header and is the first line of the data section. For a 
detailed description of header and data see sections 3 and 4. 
If a file includes more than one dataset, the individual datasets are identified by 
their Names and separated by lines containing “[GCS_ARRAY dataset_name]”. 
You can type in the entry for Name during the saving procedure (see the 
appropriate controller and software manuals for details). The name may not 
contain the “[”, “]” or “;” characters. 
Example: 
[GCS_ARRAY BC-Scan] 
# REM data scanned with C-880 Control 
# 
# TYPE = 0 
# SEPARATOR = 9 
# DIM = 3 
# 
# START0 = 0.3 
# END0 = 0.6 
# NDATA0 = 13 
# NAME0 = B [mm] 
# 
# START1 = 0.3 
# END1 = 0.6 
# NDATA1 = 4 
# NAME1 = C [mm] 
# 
# NDATA2 = 52 
# NAME2 = Intensity [V] 
0.00198 0.00107 0.00153 0.00153 
0.00183 0.00153 0.00198 0.00168 

Release 1.2.1 www.pi.ws Page 3 



GCS Array Data Format Software Manual SM 146E 

0.00153 0.00168 0.00107 0.00183 
0.00122 0.00122 0.00198 0.00153 
0  5.80621 0  0 
0.00137 0.00137 0.00168 0.00122 
0.00183 0.00153 0.00198 0.00122 
0.00107 0.00122 0.00122 0.00153 
0.00168 0.00198 0.00137 0.00137 
0.00153 0.00198 0.00107 0.00122 
0.00137 0.00168 0.00183 0.00168 
0.00137 0.00153 0.00183 0.00198 
0.00107 0.00153 0.00122 0.00198 
[GCS_ARRAY XY-Scan] 
# REM intensity along a path in X and Y 
# 
# TYPE = 1 
# SEPARATOR = 9 
# DIM = 3 
# NDATA = 5 
# 
# NAME0 = X position [mm] 
# NAME1 = Y position [mm] 
# NAME2 = intensity [V] 
# 
2.1 -4.02 0.001 
2.24 -6.93 0.0021 
2.4 -8.01 0.0019 
2.524 -7.03 0.00562 
2.802 0 0.00341 
Listing 1: Sample file containing two datasets (“BC-Scan” and “XY-Scan”) in GCS 
Array data format 

3. Header 

3.1. Description 
A dataset starts with the header. The first character of each line belonging to the 
header is “#”. The first line not starting with “#” marks the end of the header and is 
the first line of the data. Any header line found in the dataset after this point will 
cause an error when read in. 
The keyword VERSION indicates the version of the GCS Array data format. (In the 
future new versions may be introduced). If VERSION is not specified in the header, 
Version 1 is assumed. 
Each header line can hold a single value, or a remark, or can be empty. To identify 
the values and the remarks, each header line starts with a keyword. Recognition of 
keywords is case insensitive (e.g. REM, rem and REm are all interpreted as REM). 
The header can contain remarks whose contents are not part of the GCS Array 
data specification. Information like the date of creation or the author of the data 
can be placed in remarks. A remark starts with the keyword REM. 
Lines holding values have the following syntax: 
# KEY = value 
where KEY stands for one of the defined keywords, and value is a numeric value, 
either integer or floating point. 

Release 1.2.1 www.pi.ws Page 4 



GCS Array Data Format Software Manual SM 146E 

Valid keywords are listed in the table below. Note that the percent sign (%) is to be 
replaced by a non-negative integer. 

3.2. Keywords 
Keyword Description For 

Data 
Type 

Required / 
Optional (with 
default value) 

REM Everything in the same line after “REM“ is 
ignored 

All optional 

VERSION Version of GCS Array format used All Required for 
version >1 

DIM Number of “dimensions” of data; minimum 2; use 
3 for 2-D scan + intensity data 

All Required 

TYPE Type of data: currently there are two data types: 

• 0: matrix data (see p. 7) 

• 1: table data (see p. 10) 

All Required 

SEPARATOR When the data sections contains more than one 
data element in a single line, the elements are 
separated by the “separator” character. This 
value is the decimal ASCII value of the 
separator character (e.g. a value of 9 is the TAB 
character, 32 is the space character, ...) 

All Optional, default 
is 9 (TAB), 32 
(SPACE) is 
always treated 
as separator 

NDATA Number of rows in the table (number of n-
dimensional data points) 

Table Required 

NDATA% 
e.g.: 
NDATA0 
NDATA1 
... 

Size of the % dimension, where % is a non-
negative integer smaller than DIM (for DIM=4, % 
goes from 0 to 3). 
 

Matrix Required for all 
but the “highest” 
dimension 

NAME% Value which can be used to describe the data in 
the % dimension (e.g. you can use this as the 
caption for the corresponding axis in a graph), 
where % is a non-negative integer smaller than 
DIM (for DIM=4, % goes from 0 to 3). 

All Optional 

START% Start value for the % dimension, where % is a 
non-negative integer smaller than DIM–1 (for 
DIM=4, % goes from 0 to 2). 
See documentation of matrix data for details 
(p. 7). 

Matrix Required 

END% End value for the % dimension, where % is a 
non-negative integer smaller than DIM–1 (for 
DIM=4, % goes from 0 to 2). See documentation 
of matrix data for details (p. 7). 

Matrix Required, if 
“DELTA%” is not 
given 

DELTA% Difference between values for the % dimension, 
where % is a non-negative integer smaller than 
DIM–1 (for DIM=4, % goes from 0 to 2). 

Matrix Required, if 
“END%” is not 
given 

SAMPLE_TIME If the table data is a time series, this value gives 
the time difference between two data points 

Table Optional 

Release 1.2.1 www.pi.ws Page 5 



GCS Array Data Format Software Manual SM 146E 

Keyword Description For 
Data 
Type 

Required / 
Optional (with 
default value) 

TRANS_UNIT% Unit of transmitted values as text, where % is a 
non-negative integer smaller than DIM (for 
DIM=4, % goes from 0 to 3). If this is “RAW” 
DISP_UNIT%, RATIO_NOM% and 
RATIO_DENOM% can be used to calculate and 
display some more readable form 

All Optional 

DISP_UNIT% Unit of displayed values as text, where % is a 
non-negative integer smaller than DIM (for 
DIM=4, % goes from 0 to 3). If TRANS_UNIT is 
“RAW”, RATIO_NOM% and RATIO_DENOM% 
can be used to calculate and display some more 
readable form 

All Optional 

RATIO_NOM% Nominator of factor to transform transmitted 
value, where % is a non-negative integer smaller 
than DIM (for DIM=4, % goes from 0 to 3). 

All Optional 

RATIO_DENOM% Denominator of factor to transform transmitted 
value, where % is a non-negative integer smaller 
than DIM (for DIM=4, % goes from 0 to 3). 

All Optional 

END_HEADER Marks the last line of the header All Required 

4. Values and units 
To achieve more accuracy with small values and to save CPU time on the 
controller side it may be better e.g. to send integer data of raw encoder counts and 
let the receiving host software convert these values to “real world” data (e.g. mm). 
To indicate the format of transmitted values TRANS_UNIT can be used. If 
TRANS_UNIT is “RAW” the host software can look up DISP_UNIT, RATIO_NOM 
and RATIO_DENOM to convert the data read. 
Example: 
[GCS_ARRAY BC-Scan] 
# … 
# 
# TRANS_UNIT0 = RAW 
# TRANS_UNIT1 = RAW 
# TRANS_UNIT2 = V 
# DISP_UNIT0 = mm 
# DISP_UNIT1 = mm / sec 
# RATIO_NOM0 = 1 
# RATIO_DENOM0 = 1000 
# RATIO_NOM1 = 1 
# RATIO_DENOM1 = 4000 
# 
# … 

In this example the position is transmitted as counts and the velocity as 
counts/cycle. To display the values as mm or as mm/sec the values read in must 
be converted: 

][
0_

0_][ rawposition
DENOMRATIO

NOMRATIOmmposition ⋅=  

Release 1.2.1 www.pi.ws Page 6 



GCS Array Data Format Software Manual SM 146E 

][
1_

1_sec]/[ rawvelocity
DENOMRATIO

NOMRATIOmmvelocity ⋅=  

The values of the third channel are transmitted already in V (volts), so no 
conversion is necessary. 

5. Data 
Version 1 of the GCS Array data format recognizes two types of n-dimensional 
arrays of values, known as matrix data (TYPE = 0) and table data (TYPE = 1).  
An array can be handled as matrix data if the values of the first n-1 dimensions are 
equally spaced, i.e. fully determined by the start value, end value and the number 
of values value for the dimension. When matrix data is specified in the TYPE 
keyword, the data section contains only values from the nth dimension: the values 
for the other dimensions can be regenerated from their respective start, end and 
number values. 
If the array does not have the regularity required for handling as matrix data, it can 
be handled as table data. When table data is specified in the TYPE keyword, the 
data section contains the values of all n dimensions for each data point.  
Matrix data can be transferred more rapidly than table data.  

5.1. Matrix Data 

5.1.1. Description 
Data TYPE 0, matrix data, is used for “uniform” data, i.e. data where the first n-1 
dimensions contain values which are equally spaced. Such datasets could result, 
for example, when data is collected from a scan along one or more axes with all 
steps on a given axis the same size.   
Example 1 (see Listing 2 below): While moving an axis in 0.1 mm steps, the 
intensity of the analog input channel is measured. In this case you do not need to 
store the position for each of the data points. It is sufficient to place the start 
position, the end position and the number of steps in the header in order to know 
everything relevant about the motion of the axis. The only values written to the 
data section of the dataset are the measured intensity values. 
Example 2 (see also Listing 3 on p. 9): A 2-axis rectangular scan moves over a 
grid with uniform steps and measures the intensity at each point. The only values 
which are needed for the first two axes are the start and the end positions and the 
number of data points along each axis. These values are placed in the header. 
The data section contains only the measured intensity values. 
Hence, for matrix data, the data actually written to the data section of the dataset is 
always the data for the highest-level “dimension”. The lower-level dimensions are 
described completely by the START%, END% or DELTA% and NDATA% values in 
the header. 
The following file contains one dataset, which describes a scan along a single axis, 
named the B-axis, from 0.38 to 0.42, with 9 collected data points. 
 

# REM data scanned with C-880 Control 
# REM saved 10:04:36 - Tuesday, September 10, 2002 
# 
# TYPE = 0 
# SEPARATOR = 9 

Release 1.2.1 www.pi.ws Page 7 



GCS Array Data Format Software Manual SM 146E 

# DIM = 2 
# 
# START0 = 0.38 
# END0 = 0.42 
# NDATA0 = 9 
# NAME0 = B [mm] 
# 
# NDATA1 = 9 
# NAME1 = Intensity [V] 
# 
0.00137 
0.00137 
0.00107 
2.72282 
5.80789 
1.18349 
0.00183 
0.00168 
0.00107 

Listing 2: Scan along one axis with steps of uniform size; saved as matrix data 
(TYPE 0) 
From the information in the header you can calculate the corresponding B-position 
for each measured intensity value. B was 0.38 for the first value (0.00137) and 
0.395 for the 4th value (2.72282). To calculate the step size between two points, 
use the following formula: 

STEPS% = (END% - START%) / (NDATA%-1) 
As an alternative you can have the step size given in the header with the key 
DELTA%. To calculate the last value of the data use 

END% = START% + (NDATA%-1) * DELTA%  
Note that START%, END%, DELTA% and NDATA% are required for each 
dimension but the highest, because without them, the values for these dimensions 
can not be calculated. For the highest dimension, the values are found in the data 
section. 
The following file contains a dataset which shows a 2D scan using axes 
designated B and C with 13 data points along the B axis and 4 along the C axis. 
 

# REM data scanned with C-880 Control 
# 
# TYPE = 0 
# SEPARATOR = 9 
# DIM = 3 
# 
# START0 = 0.3 
# END0 = 0.6 
# NDATA0 = 13 
# NAME0 = B [mm] 
# 
# START1 = 0.3 
# DELTA1 = 0.1 
# NDATA1 = 4 
# NAME1 = C [mm] 

Release 1.2.1 www.pi.ws Page 8 



GCS Array Data Format Software Manual SM 146E 

# 
# NDATA2 = 52 
# NAME2 = Intensity [V] 
0.00198 0.00107 0.00153 0.00153 
0.00183 0.00153 0.00198 0.00168 
0.00153 0.00168 0.00107 0.00183 
0.00122 0.00122 0.00198 0.00153 
0  5.80621 0  0 
0.00137 0.00137 0.00168 0.00122 
0.00183 0.00153 0.00198 0.00122 
0.00107 0.00122 0.00122 0.00153 
0.00168 0.00198 0.00137 0.00137 
0.00153 0.00198 0.00107 0.00122 
0.00137 0.00168 0.00183 0.00168 
0.00137 0.00153 0.00183 0.00198 
0.00107 0.00153 0.00122 0.00198 

Listing 3: Scan along two axes with steps of uniform sizes; saved as matrix data 
(TYPE 0) 
In this example the organization of the data becomes clear. With this data you can 
build a matrix m of size (13,4). The order of the elements in the data section of the 
dataset is: m(0,0), m(0,1), m(0,2), m(0,3), m(1,0), m(1,1), ... , m(12,3). 
Listing 3 shows that at the position with the coordinates B = 0.325 and C=0.4, an 
intensity of 0.00153 was measured, and the maximum value was found at B=0.4 
and C=0.4. 

5.1.2. Order of Data 
Elements in the data section need not be arranged in the row-column format 
shown in the example in Listing 3. There could be only one value per line—as long 
as the information in the header is consistent, the “layout” of the data in the data 
section does not matter. 
For matrix data in a dataset with a given DIM specification you can calculate the 
number of data elements by multiplying the NDATA% values: 

NumberOfData = 1; 
FOR (I=0 TO DIM-2) 
 NumberOfData := NumberOfData * NDATA[i]; 
NEXT; 

or, in mathematical notation:     
NumberOfDataPoints = (NDATA0)(NDATA1)(NDATA2)...(NDATAn) 
where  n = DIM-2 
The data is stored in a matrix of dimension DIM-1. The values can be read into a 
corresponding array (e.g. matrix) in your program with code like the following: 

FOR (I=0 TO NDATA[0]-1) 
FOR(J=0 TO NDATA[1]-1) 

... 
FOR(P=0 TO NDATA[DIM-2]-1) 

matrix[I, J, ..., P] =  ReadNextValueFromFile(); 
NEXT; 

NEXT; 
NEXT; 

Release 1.2.1 www.pi.ws Page 9 



GCS Array Data Format Software Manual SM 146E 

5.2. Table Data 
Data TYPE 1, table data, can be used to store data that does not have the 
regularity required for matrix data described above.  

5.2.1. Description 
Suppose, for example, you measure the intensity of an analog input while moving 
along a path in space. At each measurement point the X, Y, Z coordinates and the 
intensity value (four “dimensions”) are captured. Because the path may be 
irregular, it is not possible to generate any of the coordinate values with a stepping 
algorithm as it was when scanning, and hence all four data values must be 
accorded places in the data section.  
Think of the data as organized with one column for each dimension and one row 
for each measurement. For table data the START%, END% and NDATA% 
keywords are not needed. Only one keyword, NDATA, is required; NDATA gives 
the number of rows (data points). The number of columns is given by the value for 
DIM. 
 

# REM intensity along a path in X and Y 
# 
# TYPE = 1 
# SEPARATOR = 9 
# DIM = 3 
# NDATA = 5 
# 
# NAME0 = X position [mm] 
# NAME1 = Y position [mm] 
# NAME2 = intensity [V] 
# 
2.1  -4.02  0.001 
2.24  -6.93  0.0021 
2.4  -8.01  0.0019 
2.524  -7.03  0.00562 
2.802  0  0.00341 

Listing 4: Motion in a plane and corresponding intensity values saved as table data 
(TYPE 1) 

5.2.2. Time Series 
Another example for table data are time series. The difference in time between two 
data points (“rows” in the table) is fixed. In order to transfer this fixed value only 
once, there’s the special key “SAMPLE_TIME”. 

# TYPE = 1 
# SEPARATOR = 32 
# DIM = 2 
# NDATA = 7 
# SAMPLE_TIME = 0.04 
# NAME0 = position 
# NAME1 = position error 
# END_HEADER 
1.01 0.003 
1.013 0.0025 
1.01 0.002 
1.02 0.002 

Release 1.2.1 www.pi.ws Page 10 



GCS Array Data Format Software Manual SM 146E 

1.018 0.0021 
1.009 0.002 
1.0 0.002 
Listing 5: Time series of two measured items as table data (TYPE 1) 

5.2.3. Order of Data 
In the data section of the data set, the elements need not be arranged in the row-
column format shown in the example. It is also allowable to place one value per 
line (i.e. there is no distinction between the separator and linefeed characters). As 
long as the information in the header is consistent, the “layout” of the data does not 
matter, only the order. 
The data is organized “row” wise: the first value is the first value for the first 
dimension, the second value is first value for the second dimension (column), until 
the values for all dimensions have been read in; then follows the second value for 
the first dimension, etc. 
The data can be stored in a 2D matrix with code like the following: 

FOR (ROW=0 TO NDATA-1) 
FOR(COL=0 TO DIM-1) 

matrix[ROW, COL] = ReadNextValueFromFile(); 
NEXT; 

NEXT; 
 

 

Release 1.2.1 www.pi.ws Page 11 


	0. Manufacturer Declarations
	0.1. Disclaimer

	1.  Introduction
	2. Conventions
	3. Header
	3.1. Description
	3.2. Keywords

	4. Values and units
	5. Data
	5.1. Matrix Data
	5.1.1. Description
	5.1.2. Order of Data

	5.2. Table Data
	5.2.1. Description
	5.2.2. Time Series
	5.2.3. Order of Data



