

MS112E Software Manual
C-843 GCS DLL

Windows Library Reference
Release: 4.0.0 Date: 2009-11-20

This document describes software for use
with the following products:

 C-843.21
Motor Controller Card (PCI), 2 motor axes

 C-843.41
Motor Controller Card (PCI), 4 motor axes

6-0 ⋅ Fax: +49-721-4846-299
 info@pi.w ws

© Physik Instrumente (PI) GmbH & Co. KG
Auf der Römerstr. 1 ⋅ 76228 Karlsruhe, Germany

 Tel. +49-721-484
s ⋅ www.pi.

Physik Instrumente (PI) GmbH & Co. KG is the owner of the following company names and
trademarks:
PI®, PIC®, PICMA®, PILine®, PIFOC®, PiezoWalk®, NEXACT®, NEXLINE®, NanoCube®,
NanoAutomation®

The following designations are protected company names or registered trademarks of third
parties:
Microsoft, Windows, LabView

Copyright2009 by Physik Instrumente (PI) GmbH & Co. KG, Karlsruhe, Germany.
The text, photographs and drawings in this manual enjoy copyright protection. With regard
thereto, Physik Instrumente (PI) GmbH & Co. KG reserves all rights. Use of said text,
photographs and drawings is permitted only in part and only upon citation of the source.

First printing 2009-11-20
Document Number MS112E, Bro, Release 4.0.0
C-843_GCS_DLL_MS112E.doc

Subject to change without notice. This manual is superseded by any new release. The newest
release is available for download at www.pi.ws (http://www.pi.ws).

http://www.pi.ws/

C-843 GCS DLL Software Manual MS112E

Table of Contents

0. Manufacturer Declarations 5
0.1. Scope of This Manual ...5
0.2. Disclaimer ...5

1. Introduction 6
1.1. Conversion of Units...6
1.2. Rounding Considerations..6
1.3. Items to be Commanded...7
1.4. Program Sequence...8

2. General Information About PI DLLs 9
2.1. Threads...9
2.2. DLL Handling ..9

2.2.1. Using a Static Import Library ..9
2.2.2. Using a Module Definition File..9
2.2.3. Using Windows API Functions ...10

2.3. Function Calls ...10
2.3.1. Item Identifiers..10
2.3.2. Arguments for the Items...10

2.4. Types Used in PI Software ...11
2.4.1. Boolean Values ..11
2.4.2. NULL Pointers ..11
2.4.3. C-Strings ..11

3. C-843 GCS DLL Function Groups 12
3.1. Communication Functions ..12
3.2. Functions for Initialization of the C-843 GCS DLL12
3.3. Functions for GCS Commands ...13
3.4. Functions for Accessing QMC Commands16
3.5. Functions for User-Defined Stages...17

4. C-843 GCS DLL Function Reference (alphabetical) 18

5. Motion Parameters 61
5.1. Parameter Handling ..61
5.2. Parameter List...62
5.3. Transmission Ratio and Scaling Factor ..67
5.4. Travel Range Adjustment ...68
5.5. Parameter Databases...71

Release 4.0.0 www.pi.ws Page 3

C-843 GCS DLL Software Manual MS112E

5.6. Updating PIStages2.dat ..72

6. Error Codes 73

7. Index 88

Release 4.0.0 www.pi.ws Page 4

C-843 GCS DLL Software Manual MS112E

0. Manufacturer Declarations

0.1. Scope of This Manual
This manual describes the function calls in the C-843 GCS DLL.

The contents of the manual is furnished for informational use only, is subject
to change without notice and should not be construed as a commitment by
Physik Instrumente (PI).

Physik Instrumente (PI) assumes no responsibility or liability for any errors or
inaccuracies that may appear in this manual.

0.2. Disclaimer
The software described in this manual is distributed “as is”. Physik
Instrumente (PI) does not guarantee that this software is free of errors and
will not be responsible for any damage arising from the use of this software.

Physik Instrumente (PI) expressly disclaims any and all warranties including
any implied warranty of merchantability and fitness for a particular purpose.
Physik Instrumente (PI) does not warrant, guarantee, or make any
obligations regarding the use or the results of the use of this software, in
terms of correctness, accuracy, reliability or otherwise, and does not warrant
that operation of the software will be uninterrupted or error-free. The user
agrees to use this software on his own responsibility.

Release 4.0.0 www.pi.ws Page 5

C-843 GCS DLL Software Manual MS112E

1. Introduction
This manual describes the C-843 GCS DLL which makes all relevant
commands of the PI General Command Set available for the C-843. The PI
General Command Set (GCS) is supported by a wide range of PI systems.
This command set is well-suited for positioning tasks with one or more axes
and is independent of the specific hardware (controller or attached stages).

The commands of the motion processors command set (also referred to as
“QMC” command set) can be sent via the C-843 GCS DLL as well so that its
complete functionality is available to the programmer. The complete
documentation provided by the motion processors manufacturer is included
on the C-843 CD. Note that because of their complexity, successful use of
the motion processor commands requires extensive experience.

The hardware and software installation procedures for the C-843 are
described in the C-843 User Manual (MS77E). Software tools which might be
mentioned in this document are described in their own manuals. All
documents are available as PDF files on the C-843 CD. Updated releases
are available for download at www.pi.ws or via e-mail: contact your Physik
Instrumente Sales Engineer or write info@pi.ws.

List of manuals related to this document:
C-843_User_MS77E User Manual for C-843 DC-Servo-Motor

Controller board
C-843_GCS_Commands_SM149E Manual for GCS Library (Windows and

Linux Versions)
C843_GCS_LabVIEW_MS89E Manual for GCS LabVIEW Drivers
PIMikroMoveUserManual_SM148E Manual for PIMikroMove™ Host Software
PiStageEditor_SM144E Manual for PIStageEditor Tool for Stage

Database Handling
GCSData_User_SM146E GCS Data Format Description
A000T0014_100_UserProfileModeSoftware Technical Note for User Profile Mode and

Profile Generator DLL

This manual assumes that the reader has a fundamental understanding of
basic servo systems, as well as motion control concepts and applicable
safety procedures.

1.1. Conversion of Units
The GCS system uses physical units of measure. It provides a conversion
factor to convert hardware-dependent units (encoder counts) into mm or
degrees, as appropriate (see C843_SPA () and C843_qSPA (), parameters
0xE and 0xF). Defaults for the values are generally taken from a database of
stages that can be connected. An additional scale factor can be applied,
making a second physical unit (working unit) available without overwriting the
conversion factor for the first (see the C843_DFF(), C843_qDFF() function
calls).

1.2. Rounding Considerations
When converting move commands in (working) units to the hardware-
dependent units required by the motion control layers, rounding errors can
occur. The GCS software is so designed, that a relative move of x working
units will always result in a relative move of the same number of hardware
units. Because of rounding errors, this means, for example, that 2 relative

Release 4.0.0 www.pi.ws Page 6

C-843 GCS DLL Software Manual MS112E

moves of x working units may differ slightly from one relative move of 2x.
When making large numbers of relative moves, especially when moving back
and forth, either intersperse absolute moves, or make sure that each relative
move in one direction is matched by a relative move of the same size in the
other direction.

Examples (assuming 5 hardware units = 33 x 10-6 physical units):
Relative moves smaller than 0.000003 physical units cause move of 0 hardware units.
Relative moves of 0.000004 to 0.000009 physical units cause move of 1 hardware unit.
Relative moves of 0.000010 to 0.000016 physical units cause move of 2 hardware units.
Relative moves of 0.000017 to 0.000023 physical units cause move of 3 hardware units.
Relative moves of 0.000024 to 0.000029 physical units cause move of 4 hardware units.

Hence:
2 moves of 10 x 10-6 physical units followed by 1 move of 20 x 10-6 in the other direction
cause a net motion of 1 hardware unit forward.

100 moves of 22 x 10-6 followed by 200 of -11 x 10-6 result in a net motion of -100 hardware
units.

5000 moves of 2 x 10-6 result in no motion.

1.3. Items to be Commanded
The identifiers listed below are used to address the appropriate items with
GCS commands:

 Axes:

The identifiers are 1 and 2 (with C-843.21) or 1 to 4 (with C-843.41) by
default.
The default identifiers can be changed using C843_SAI(). The new
identifiers must then be used with all szAxes arguments, but are lost
when the C-843 board is disconnected in the software.

 Digital output lines:

A to H for the lines concerned by C843_DIO(). These output lines can be
brought out of the PC housing using the sub-D 25f connector of the
adapter bracket included with C-843. The corresponding ribbon cable
connects to the 26-pin IDC connector (J5) on the C-843 (see C-843 User
Manual for details).

1 and 2 (with C-843.21) or 1 to 4 (with C-843.41) for the lines concerned
by C843_CTO() and C843_TRO(). These output lines can be brought
out of the PC housing using the sub-D 15m connector of the adapter
bracket included with C-843. The corresponding ribbon cable connects
to the All-axes 16-pin IDC connector of the C-843 board (J8; see C-843
User Manual for details). Note that older revisions of the adapter bracket
do not provide the sub-D 15m connector. If required, contact your PI
sales engineer or write info@pi.ws to obtain a new version.

The identifiers of the digital output lines can not be changed.

 Digital input lines:

A to H for the lines concerned by C843_qDIO(). These input lines are
located on the same 26-pin IDC connector (J5) like the digital output

Release 4.0.0 www.pi.ws Page 7

C-843 GCS DLL Software Manual MS112E

lines A to H, see above for how to bring them out of the PC housing
using a bracket.

1 and 2 (with C-843.21) or 1 to 4 (with C-843.41) for the lines which can
be used by C843_FED(). These input lines are located on the same 16-
pin IDC connector (J8) like the digital output lines 1 to 2 (or 4), see
above for how to bring them out of the PC housing using a bracket.

The identifiers of the digital input lines can not be changed.

 Data recorder tables (memory tables for recorded data):

1 to 4; the identifiers can not be changed. See "Data Recording" in the
C-843 GCS Commands manual (SM149E) for more information.

 Joystick:

Each joystick connected to the host PC is identified by a joystick device
ID, and each of its axes is identified by a joystick axis ID. Both joystick
device IDs and joystick axis IDs start with 1 and can not be changed.
See "Joystick Control" in the C-843 GCS Commands manual (SM149E)
for more information.

 Clusters and Blocks for User Profile Mode:

Using the User Profile Mode commands (Uxx), you can perform motion
by processing Datasets in the specified Cluster(s). A Cluster consists of
space for a specified number of Datasets (a Dataset specifies a point on
a 1-D trajectory; the values it contains are used for trajectory
interpolation—time and position are always required, while velocity,
acceleration and jerk are optionally required). Data can only be
introduced into a Cluster using C843_UPA(), which swaps Datasets into
a Cluster from a Block, which in turn was filled using C843_UPD().

Possible cluster IDs are A to G, the maximum number of Blocks that can
be assigned to a Cluster is 32.

1.4. Program Sequence
After all required files have been installed (the hardware and software
installation procedures for the C-843 are described in the C-843 User Manual
(MS77E)), write a program that performs the following steps:
1. Call C843_Connect() (p.19) to open a connection to the board
2. Call C843_CST() (p.19) to determine which stages are connected to the

four/two axes of the C-843 board.
3. Call C843_INI() (p.30) to initialize the motion processor for the axes

(switches also the servo on).
4. Run one of the referencing functions—C843_REF() (p.51), C843_MNL()

(p.33), C843_MPL() (p.34), C843_FNL(), C843_FPL(), C843_FRF(),
depending on what stage types are connected—to be able to perform
absolute moves or access abolute position information with functions like
C843_MOV() (p.34) or C843_qPOS() (p. 44).

Release 4.0.0 www.pi.ws Page 8

C-843 GCS DLL Software Manual MS112E

5. Make a few test moves with C843_MOV() (p.34) so that you can verify
your program’s operation.

2. General Information About PI DLLs
The information below is valid for the DLL described in this manual as well as
for the DLLs for many other PI products.

2.1. Threads
These DLLs are not "thread-safe". The function calls of the DLL are not
synchronized and can be safely used only with one thread at a time.

2.2. DLL Handling
To get access to and use the DLL functions, the library must be included in
your software project. There are a number of techniques supported by the
windows operating system and supplied by the different development
systems. The following sections describe the methods which are most
commonly used. For detailed information, consult the relevant documentation
of the development environment being used. (It is possible to use the
C843_GCS_DLL.DLL in Delphi projects. Please see
http://www.drbob42.com/delphi/headconv.htm for a detailed
description of the steps necessary.)

2.2.1. Using a Static Import Library
The C843_GCS_DLL.DLL module is accompanied by the
C843_GCS_DLL.LIB file. This is the static import library which can be used
by the Microsoft Visual C++ system for 32 bit applications. In addition other
systems, like the National Instruments LabWindows CVI or Watcom C++ can
handle, i.e. understand, the binary format of a VC++ static library. When the
static library is used, the programmer must:

 Use a header or source file in which the DLL functions are declared, as needed for the
compiler. The declaration should take into account that these function come from a "C-
Language" Interface. When building a C++ program, the functions have to be declared
with the attribute specifying that they are coming from a C environment. The VC++
compiler needs an extern "C" modifier. The declaration also specify that these functions
are be called like standard Win-API functions. That means the VC++ compiler needs to
see a WINAPI or __stdcall modifier in the declaration.

 Add the static import library to the program project. This is needed for the linker and tells
it that the functions are located in a DLL and that they are to be linked dynamically during
program startup.

2.2.2. Using a Module Definition File
The module definition file is a standard element/resource of a 16- or 32-bit
Windows application. Most IDEs (integrated development environments)
support the use of module definition files. Besides specification of the module
type and other parameters like stack size, function imports from DLLs can be
declared. In some cases the IDE supports static import libraries. If that is the
case, the IDE might not support the ability to declare DLL imported functions
in the module definition file. When a module definition file is used, the
programmer must:

 Use a header or source file in which the DLL functions must be declared, as needed for
the compiler. The declaration should take into account that these functions come from a
"C-Language" Interface. When building a C++ program, the functions have to be declared
with the attribute indicating that they are coming from a C environment. The VC++
compiler needs an extern "C" modifier. The declaration also specify that these functions

Release 4.0.0 www.pi.ws Page 9

C-843 GCS DLL Software Manual MS112E

are be called like standard Win-API functions. That means the VC++ compiler needs to
see a WINAPI or __stdcall modifier in the declaration.

 Modify the module definition file with an IMPORTS section. In this section, all functions
used in the program must be named. Follow the syntax of the IMPORTS statement.
Example:

 IMPORTS
 C843_GCS_DLL.C843_IsConnected

2.2.3. Using Windows API Functions
If the library is not to be loaded during program startup, it can sometimes be
loaded during program execution using Windows API functions. The entry
point for each desired function has to be obtained. The DLL linking/loading
with API functions during program execution is always possible, independent
of the development system or files which have to be added to the project.
When the DLL is loaded dynamically during program execution, the
programmer has to:

 Use a header or source file in which local or global pointers of a type appropriate for
pointing to a function entry point are defined. This type could be defined in a typedef
expression. In the following example, the type FP_C843_IsConnected is defined as a
pointer to a function which has an int as argument and returns a BOOL value. Afterwards
a variable of that type is defined.

 typedef BOOL (WINAPI *FP_C843_IsConnected)(int);
 FP_C843_IsConnected pC843_IsConnected;

 Call the Win32-API LoadLibrary() function. The DLL must be loaded into the process
address space of the application before access to the library functions is possible. This is
why the LoadLibrary() function has to be called. The instance handle obtained has to be
saved for use by the GetProcAddress() function. Example:

 HINSTANCE hPI_Dll = LoadLibrary("C843_GCS_DLL.DLL");

 Call the Win32-API GetProcAddress() Win32-API function for each desired DLL function.
To call a library function, the entry point in the loaded module must be known. This
address can be assigned to the appropriate function pointer using the GetProcAddress()
function. Afterwards the pointer can be used to call the function. Example:

 pC843_IsConnected = (FP_C843_IsConnected)GetProcAddress(hPI_Dll,"C843_IsConnected");
 if (pC843_IsConnected == NULL)
 {
 // do something, for example
 return FALSE;
 }
 BOOL bResult = (*pC843_IsConnected)(1); // call C843_IsConnected(1)

2.3. Function Calls
Almost all functions will return a boolean value (type BOOL, see "Types
Used in PI Software, p.11)"). If the function succeeded the return value is
TRUE, otherwise it is FALSE. To find out what went wrong, call
C843_GetError() (p.27) and look up the value returned in "Error Codes
(p.61)". The first argument to most function calls is the ID of the selected
controller.

2.3.1. Item Identifiers
Many commands accept one ore more axis identifiers. If no axes are
specified (either by giving an empty string or a NULL pointer) some
commands will address all connected axes. The same model is used for the
other items listed in Section 1.3 on p. 7.

2.3.2. Arguments for the Items
The arguments for the axes (or other items to be commanded) are stored in
an array passed to the function. The argument for the first axis in the axis

Release 4.0.0 www.pi.ws Page 10

C-843 GCS DLL Software Manual MS112E

string is stored in array[0], for the second axis in array[1], and so on.
So if you call C843_qPOS("123", double pos[3]), the position for '1' is
in pos[0], for '2' in pos[1] and for '3' in pos[2]. If you call
C843_MOV("12", double pos[2]) the target position for '1' is in
pos[0] and for '2' in pos[1].
Each axis identifier is sent only once. Only the last occurrence of an axis
identifier is actually sent with its argument to the controller. So if you call
C843_MOV("112", pos[3]) with pos[3] = { 1.0, 2.0, 3.0 }, '1'
will move to 2.0 and '2' to 3.0. If you then call C843_qPOS("112",
pos[3]), pos[0] and pos[1] will contain 2.0 as the position of '1'.
(See C843_MOV() (p.34) and C843_qPOS() (p.44))
See Types Used in PI Software (p.11) for a description of used types for
arguments.

2.4. Types Used in PI Software

2.4.1. Boolean Values
The library will use the convention used in Microsoft's C++ for boolean
values. If your compiler does not support this, it can be easily set up. Just
add the following lines to a central header file of your project:
 typedef int BOOL;
 #define TRUE 1
 #define FALSE 0

2.4.2. NULL Pointers
In the library and the documentation "nul-pointers" (pointers pointing
nowhere) have the value NULL. This is defined in the Windows environment.
If your compiler does not know it, simply use:
 #define NULL 0

2.4.3. C-Strings
The library uses the C convention to handle strings t. Strings are stored as
arrays of char with '\0' as terminating delimiter. Thus, the "type" of a c-string
is char*. Do not forget to provide enough memory for the final '\0'. If you
declare
char* szText = "HELLO";

it will occupy 6 bytes in memory. To remind you of the zero at the end, the
names of the corresponding variables start with "sz".

Release 4.0.0 www.pi.ws Page 11

C-843 GCS DLL Software Manual MS112E

3. C-843 GCS DLL Function Groups
In the following sections the GCS DLL functions are grouped by type.
Detailed descriptions are in the Function Reference Section, starting on
p. 18.

 “Communication Functions” (p. 12) shows how to initiate communication
with a C-843 controller.
 “Functions for Initialization of the C-843 GCS DLL” (p. 12) describes the
steps necessary at startup of the library.
 Functions for GCS Commands, (p. 13) describes the functions giving
access to the C-843 GCS commands (p. 13).
 Functions for Accessing QMC Commands (p. 16) describes the
functions giving access to the C-843 QMC commands (command set of
the motion processor).
 Functions for User-Defined Stages (p. 17) describes the functions to
add, edit and remove user-defined stages (parameter sets).

3.1. Communication Functions
To use the DLL and communicate with a C-843 controller the program must
first initialize the controller with the "open" function C843_Connect() (p.19).
To allow the handling of multiple controllers, the open function returns a non-
negative ID. This is a kind of index to an internal array storing the information
for the (different) controllers. All other calls addressing the same controller
have this ID as their first argument. C843_CloseConnection() (p.19) will
close the connection to the specified controller and free its system resources.
The communications functions are listed below:
BOOL C843_FUNC_DECL C843_ListPCI(char* szIDList,long maxlen)
long C843_FUNC_DECL C843_Connect(long iBoardNumber)
BOOL C843_FUNC_DECL C843_IsConnected(long iID)
void C843_FUNC_DECL C843_CloseConnection(long iID)
long C843_FUNC_DECL C843_GetError(long iID)
BOOL C843_FUNC_DECL C843_SetErrorCheck(long iID, BOOL bErrorCheck)
BOOL C843_FUNC_DECL C843_TranslateError(long errNr, char* szBuffer, long maxlen)

3.2. Functions for Initialization of the C-843 GCS DLL
The C-843 GCS library cannot determine which stages are connected and
must be configured at startup.
Call C843_CST() (p.19) to setup the connected stages. Afterwards call
C843_INI() (p.30) to initialize the motion processor for the axes (switches
also the servo on). With C843_qCST() (p.37) you can find out which stages
are currently configured. C843_qCST() (p.37) will always return 2 or 4 axes,
depending on the hardware version (2- or 4-axis version), axes to which no
stage was connected are assigned to "NOSTAGE". C843_qSAI() (p.45) will
always return only the identifiers of axes which are not set to “NOSTAGE”.
Call C843_qVST() (p.51) to find out which stages the library already knows
about (the content of the stage databases).
BOOL C843_FUNC_DECL C843_CST (long iID, const char* szAxes, const char * names)
BOOL C843_FUNC_DECL C843_qCST (long iID, const char* szAxes, char * names, long
maxlen)
BOOL C843_FUNC_DECL C843_INI (long iID, const char* szAxes)
BOOL C843_FUNC_DECL C843_SAI (long iID, const char* szOldAxes, const char* szNewAxes)
BOOL C843_FUNC_DECL C843_qSAI (long iID, char *axes, long maxlen)
BOOL C843_FUNC_DECL C843_qVST (long iID, char *buffer, long maxlen)

Release 4.0.0 www.pi.ws Page 12

C-843 GCS DLL Software Manual MS112E

The following example shows how to configure a C-843 and, except for the
calls to printf(), is a typical initialization of the C-843 library.
 char stages[1024];
 char axes[10];
 int ID;
 // connect to the C-843
 ID = C843_Connect(1);
 if (ID<0)
 return FALSE;

 // nothing is configured
 if (!C843_qCST(ID, "1234", stages, 1023))
 return FALSE;
 // the output should be "1=NOSTAGE\n2=NOSTAGE\n3=NOSTAGE\n4=NOSTAGE\n"
 printf("qCST() returned \"%s\"", stages);

 if (!C843_qSAI(ID, axes, 9))
 return FALSE;
 // the output should be "" - no configured axes
 printf("qSAI() returned \"%s\"", axes);

 // we want to connect two M-111.1DG to channels 1 and 2
 // and a M-112.2DG to channel four
 sprintf(stages, "M-111.1DG\nM-111.1DG\nM-111.1DG");
 if (!C843_CST(ID, "124", stages))
 return FALSE;

 if (!C843_qSAI(ID, axes, 9))
 return FALSE;
 // the output should be "124" - the new configured axes
 printf("qSAI() returned \"%s\"", axes);

 if (!C843_qCST(ID, "1234", stages, 1023))
 return FALSE;
 // the output should be "1=M-111.1DG\n2=M-111.1DG\n3=NOSTAGE\n4=M-112.2DG\n"
 printf("qCST() returned \"%s\"", stages);

 // call INI for all axes
 // "" as axes string will address all configured axes
 if (!C843_INI(ID, ""))
 return FALSE;

3.3. Functions for GCS Commands
The functions listed here provide access to the embedded commands of the
C-843 and provide some shortcuts to make the work with C-843 easier. For
the GCS commands belonging to the appropriate functions see the
alphabetical function reference beginning on p. 18. A list of GCS commands
is also available in the C-843 GCS Commands manual, which is included on
the C-843 CD.
The “Function Calls” section (see p. 10) will give you some general
information about the syntax of most commands. Read the ”Types Used in PI
Software” section (p.11) for some general notes about the argument syntax.
In the list below, the functions are arranged according to their functionality.

System Information
BOOL C843_FUNC_DECL C843_qHLP(const long iID, char* buffer, long maxlen)
BOOL C843_FUNC_DECL C843_qHPA(const long iID, char* buffer, long maxlen)
BOOL C843_FUNC_DECL C843_qHDR (const long iID, char* Buffer, long maxlen)
BOOL C843_FUNC_DECL C843_qERR(long iID, long* pnError)
BOOL C843_FUNC_DECL C843_qIDN(long iID, char* buffer, long maxlen)
BOOL C843_FUNC_DECL C843_qVER (long iID, char* szVersion, int iBufferSize)
BOOL C843_FUNC_DECL C843_qSRG(long iID, const char* szAxes, const long* iCmdarray,
long* iValarray)

Initialization, Parameter Settings
BOOL C843_FUNC_DECL C843_CST(long iID, const char* szAxes, const char* names)

Release 4.0.0 www.pi.ws Page 13

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_qCST(long iID, const char* szAxes, char* names, long maxlen)
BOOL C843_FUNC_DECL C843_INI(long iID, const char* szAxes)
BOOL C843_FUNC_DECL C843_qVST(long iID, char* buffer, long maxlen)
BOOL C843_FUNC_DECL C843_qTVI(long iID, char* axes, long maxlen)
BOOL C843_FUNC_DECL C843_SAI(long iID, const char* szOldAxes, const char* szNewAxes)
BOOL C843_FUNC_DECL C843_qSAI(long iID, char* axes, long maxlen)
BOOL C843_FUNC_DECL C843_qSAI_ALL(long iID, char* axes, long maxlen)
BOOL C843_FUNC_DECL C843_SPA(long iID, const char* szAxes, const long* iCmdarray, const
double* dValarray, const char* szStageNames)
BOOL C843_FUNC_DECL C843_qSPA(long iID, const char* szAxes, const long* iCmdarray,
double* dValarray, char* szStageNames, long iMaxNameSize)
BOOL C843_FUNC_DECL C843_DFF(long iID, const char* szAxes, const double* pdValarray)
BOOL C843_FUNC_DECL C843_qDFF(long iID, const char* szAxes, double* pdValarray)
BOOL C843_FUNC_DECL C843_CLR(long iID, const char* szAxes)

Servo Activation
BOOL C843_FUNC_DECL C843_SVO(long iID, const char* szAxes, const BOOL* pbValarray)
BOOL C843_FUNC_DECL C843_qSVO(long iID, const char* szAxes, BOOL* pbValarray)

Referencing
BOOL C843_FUNC_DECL C843_MNL(long iID, const char* szAxes)
BOOL C843_FUNC_DECL C843_MPL(long iID, const char* szAxes)
BOOL C843_FUNC_DECL C843_REF(long iID, const char* szAxes)
BOOL C843_FUNC_DECL C843_FRF(long iID, const char* szAxes)
BOOL C843_FUNC_DECL C843_FPL(long iID, const char* szAxes)
BOOL C843_FUNC_DECL C843_FNL(long iID, const char* szAxes)
BOOL C843_FUNC_DECL C843_FED(long iID, const char* szAxes, const long* iEdgeIDArray,
const long* iParArray)
BOOL C843_FUNC_DECL C843_qFED(long iID, const char* szAxes, long* iEdgeIDArray, long*
iParArray)
BOOL C843_FUNC_DECL C843_qFES(long iID, const char* szAxes, BOOL* pbValarray)
BOOL C843_FUNC_DECL C843_qREF(long iID, const char* szAxes, BOOL* pbValarray)
BOOL C843_FUNC_DECL C843_qFRF(long iID, const char* szAxes, BOOL* pbValarray)
BOOL C843_FUNC_DECL C843_qLIM(long iID, const char* szAxes, BOOL* pbValarray)
BOOL C843_FUNC_DECL C843_IsReferencing(long iID, const char* szAxes, BOOL*
pbIsReferencing)
BOOL C843_FUNC_DECL C843_IsControllerReady(const long ID, long* piControllerReady)
BOOL C843_FUNC_DECL C843_GetRefResult(long iID, const char* szAxes, BOOL* pnResult)
BOOL C843_FUNC_DECL C843_IsReferenceOK(long iID, const char* szAxes, BOOL*
pbValarray)
BOOL C843_FUNC_DECL C843_RON(long iID, const char* szAxes, const BOOL* pbValarray)
BOOL C843_FUNC_DECL C843_qRON(long iID, const char* szAxes, BOOL* pbValarray)

Motion and Positioning
BOOL C843_FUNC_DECL C843_VEL(long iID, const char* szAxes, const double* pdValarray)
BOOL C843_FUNC_DECL C843_qVEL(long iID, const char* szAxes, double* pdValarray)
BOOL C843_FUNC_DECL C843_ACC(long iID, const char* szAxes, const double* pdValarray)
BOOL C843_FUNC_DECL C843_qACC(long iID, const char* szAxes, double* pdValarray)
BOOL C843_FUNC_DECL C843_DEC(long iID, const char* szAxes, const double* pdValarray)
BOOL C843_FUNC_DECL C843_qDEC(long iID, const char* szAxes, double* pdValarray)
BOOL C843_FUNC_DECL C843_qTMN(long iID, const char* szAxes, double* pdValarray)
BOOL C843_FUNC_DECL C843_qTMX(long iID, const char* szAxes, double* pdValarray)
BOOL C843_FUNC_DECL C843_MOV(long iID, const char* szAxes, const double* pdValarray)
BOOL C843_FUNC_DECL C843_qMOV(long iID, const char* szAxes, double* pdValarray)
BOOL C843_FUNC_DECL C843_MVR(long iID, const char* szAxes, const double* pdValarray)
BOOL C843_FUNC_DECL C843_MVE(long iID, const char* szAxes, const double* pdValarray)
BOOL C843_FUNC_DECL C843_IsMoving(long iID, const char* szAxes, BOOL* pbValarray)
BOOL C843_FUNC_DECL C843_qONT(long iID, const char* szAxes, BOOL* pbValarray)
BOOL C843_FUNC_DECL C843_qPOS(long iID, const char* szAxes, double* pdValarray)
BOOL C843_FUNC_DECL C843_POS(long iID, const char* szAxes, const double* pdValarray)

Release 4.0.0 www.pi.ws Page 14

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_DFH(long iID, const char* szAxes)
BOOL C843_FUNC_DECL C843_qDFH(long iID, const char* szAxes, double* pdValarray)
BOOL C843_FUNC_DECL C843_GOH(long iID, const char* szAxes)
BOOL C843_FUNC_DECL C843_HLT(long iID, const char* szAxes)
BOOL C843_FUNC_DECL C843_STP(long iID)
BOOL C843_FUNC_DECL C843_SMO(long iID, const char* szAxes, const long* pnValarray)
BOOL C843_FUNC_DECL C843_qSMO(long iID, const char* szAxes, long* pnValarray)
BOOL C843_FUNC_DECL C843_BRA(long iID, const char* szAxes, const BOOL* pbValarray)
BOOL C843_FUNC_DECL C843_qBRA(long iID, char* szBuffer, const long maxlen)

Digital I/O, Triggering
BOOL C843_FUNC_DECL C843_CTO(long ID, const long* iTriggerLines, const long* iParamID,
const char* szValues, long iArraySize)
BOOL C843_FUNC_DECL C843_qCTO(long ID, const long* iTriggerLines, const long* pParamID,
char* szBuffer, long iArraySize, long iBufferMaxlen)
BOOL C843_FUNC_DECL C843_TRO(long ID, const long* iTriggerLines, const BOOL*
pbValarray, long iArraySize)
BOOL C843_FUNC_DECL C843_qTRO(long ID, const long* iTriggerLines, BOOL* pbValarray,
long iArraySize)
BOOL C843_FUNC_DECL C843_GetInputChannelNames(long iID, char* szBuffer, const long
maxlen)
BOOL C843_FUNC_DECL C843_GetOutputChannelNames(long iID, char* szBuffer, const long
maxlen)
BOOL C843_FUNC_DECL C843_DIO(long iID, const char* szChannels, const BOOL*
pbValarray)
BOOL C843_FUNC_DECL C843_qDIO(long iID, const char* szChannels, BOOL* pbValarray)
BOOL C843_FUNC_DECL C843_qTIO(long iID, long* pINr, long* pONr)

Sending GCS Commands Directly
BOOL C843_FUNC_DECL C843_GcsCommandset(long iID, const char* szCommand)
BOOL C843_FUNC_DECL C843_GcsGetAnswer(long ID, char* szAnswer, long bufsize)
BOOL C843_FUNC_DECL C843_GcsGetAnswerSize(long ID, long* iAnswerSize)

User Profile Mode
BOOL C843_FUNC_DECL C843_IsUserProfileActive(long iID, const char* szAxes, BOOL*
pbValarray)
BOOL C843_FUNC_DECL C843_UPB(long iID, const char* szClusters, const long* iCmdarray,
const long* iPararray, const long* iValarray)
BOOL C843_FUNC_DECL C843_UPD(long iID, const char* szClusters, const long* iCmdarray,
const long* iPararray, const double* dValarray)
BOOL C843_FUNC_DECL C843_UPC(long iID, const char* szAxes, const char* szClusters, const
long* iCmdarray, const long* iPararray)
BOOL C843_FUNC_DECL C843_UPA(long iID, const char* szClusters, const long* iCmdarray)
BOOL C843_FUNC_DECL C843_UPR(long iID, const char* szAxes, const char* szClusters, const
long* iCmdarray)
BOOL C843_FUNC_DECL C843_qUPB(long iID,const char* szClusters, const long* iCmdarray,
const long* iPararray, long* iValarray)
BOOL C843_FUNC_DECL C843_qUPD(long iID,const char* szClusters, const long* iCmdarray,
const long* iPararray, double* dValarray)
BOOL C843_FUNC_DECL C843_qUPC(long iID,char* szClusters,char* szAxes, long* iCmdarray,
long* iPararray)
BOOL C843_FUNC_DECL C843_qUPA(long iID,const char* szClusters, const long* iCmdarray,
long* iPararray)

Data Recording, Step Response
BOOL C843_FUNC_DECL C843_DRC(long iID, const long* iRecTableId, const char*
sRecSourceId, const long* iRecOption, const long* TriggerOption)
BOOL C843_FUNC_DECL C843_qDRC(long iID, const long* iRecTableId, char* sRecSourceId,
long* iRecOption, long* TriggerOption, long iArraySize)
BOOL C843_FUNC_DECL C843_DRT(long iID, const long* iRecTableId, const long*

Release 4.0.0 www.pi.ws Page 15

C-843 GCS DLL Software Manual MS112E

TriggerOption, const char* sValue, long iArrayLength)
BOOL C843_FUNC_DECL C843_qDRT(long iID, const long* iRecTableId, long* TriggerOption,
char* sValue, long iArraySize, long iValueBufferLength)
BOOL C843_FUNC_DECL C843_qDRR_SYNC(long iID, long iRecTableId, long iOffset, long
nrValues, double* pdValArray)
BOOL C843_FUNC_DECL C843_qDRR(long iID, const long* piRecTableIds, long
iNumberOfRecChannels, long iOffset, long nrValues, double** pdValArray, char*
szGcsArrayHeader, long iGcsArrayHeaderMaxSize)
BOOL C843_FUNC_DECL C843_GetAsyncBuffer (long iID, double **pnValArray)
long C843_FUNC_DECL C843_GetAsyncBufferIndex(long iID)
BOOL C843_FUNC_DECL C843_qTNR(long iID, long* iNrOfTables)
BOOL C843_FUNC_DECL C843_RTR(long iID, long iRecordTableRate)
BOOL C843_FUNC_DECL C843_qRTR(long iID, long* iRecordTableRate)
BOOL C843_FUNC_DECL C843_STE(long iID, char cAxis, double dOffset)
BOOL C843_FUNC_DECL C843_qSTE(long iID, char cAxis, long iOffset, long nrValues, double*
pdValarray)

Joystick Control
BOOL C843_FUNC_DECL C843_JON(long iId,const long* iJoystickIDsArray, const BOOL*
pbValueArray, long iArraySize)
BOOL C843_FUNC_DECL C843_qJON(long ID, const long* iJoystickIDsArray, BOOL*
pbValueArray, long iArraySize)
BOOL C843_FUNC_DECL C843_qJAX(long iId, const long* iJoystickIDsArray, const long*
iAxesIDsArray, long iArraySize, char* szAxesBuffer, long iBufferSize)
BOOL C843_FUNC_DECL C843_JAX(long ID, long iJoystickID, long iAxesID, const char*
szAxesBuffer)

Electronic Gearing
BOOL C843_FUNC_DECL C843_SRA(long ID, const char* szAxes, double* dValArray)
BOOL C843_FUNC_DECL C843_qSRA(long ID, const char* szAxes, double* dValArray)
BOOL C843_FUNC_DECL C843_EGE(long ID, const char* szAxes, BOOL* bValArray)
BOOL C843_FUNC_DECL C843_qEGE(long ID, const char* szAxes, BOOL* bValArray)
BOOL C843_FUNC_DECL C843_MAS(long ID, const char* szAxes, const char* szMasters)
BOOL C843_FUNC_DECL C843_qMAS(long ID, const char* szAxes, char* szMasters)

3.4. Functions for Accessing QMC Commands
The C-843 GCS DLL includes a command which provides access to all the
commands of the motion processors command set (“QMC” command set).
The QMC commands are sent directly to the motion processor on the C-843
controller board. This command set is the fastest but also the most difficult to
use. You have to understand how the motion processor on the C-843
controller board works if you want to use the QMC command set. The
corresponding User's Guide and Programmer's Reference for the PMD
Navigator Motion Processor MC2140CP are included on the C-843 CD. The
QMC command passing feature is implemented for customers who need
very fast applications. You have to be extremely careful with the QMC
command set, as you can crash your system if you do not handle it correctly.
All necessary settings must be made explicitly. Use QMC commands only if
the GCS command set is not fast enough.
BOOL C843_FUNC_DECL C843_SetQMC (long iID, BYTE bCmd, BYTE bAxis, int Param)
BOOL C843_FUNC_DECL C843_GetQMC (long iID, BYTE bCmd, BYTE bAxis, int *pResult)
BOOL C843_FUNC_DECL C843_SetQMCA (long iID, BYTE bCmd, BYTE bAxis, WORD

Param1, int lParam2)
BOOL C843_FUNC_DECL C843_GetQMCA (long iID, BYTE bCmd, BYTE bAxis, WORD

lParam, int *pResult)

Release 4.0.0 www.pi.ws Page 16

C-843 GCS DLL Software Manual MS112E

3.5. Functions for User-Defined Stages
 The C-843 GCS DLL has functions allowing you to both define and save
new stages (parameter sets) to the C843UserStages2.dat stage database.
Being able to specify the parameters of a stage and then save those
parameters as a set under the stage name makes it easier to connect to
previously defined stages.
Provided that you have initialized the C-843 GCS DLL by calling
C843_CST() and C843_INI(), you can afterwards create a new stage
parameter set by changing the stage parameters with C843_SPA(). It is
important to set the stage parameters correctly. Note that the parameter
which determines whether a stage is “new” or not is the Stage Name
parameter (ID 0x3C). If it is not specified, the C843_AddStage command will
fail. See “Parameter List” on p. 62 for a complete list and the parameter
handling description starting on p. 61 for further details.
To save the new stage and thus make it available for a future connection
with C843_CST(), use C843_AddStage() to add its parameter set to
C843UserStages2.dat. After addition to C843UserStages2.dat the stage will
also appear in the list returned by C843_qVST().
If you want to remove a stage from C843UserStages2.dat call
C843_RemoveStage().
It may be more comfortable to set the stage parameters using the
PIStageEditor (a GUI dialog). See the separate PI Stage Editor manual
(SM144E) for a description of how to operate that graphic interface.
The PIStageEditor can also be started from PIMikroMove™. This program
provides several functions which ease creating and editing stage parameter
sets. For further information, refer to “Tutorials - Frequently Asked
Questions” in the PIMikroMove™ manual.

NOTES
The C843_OpenUserStagesEditDialog() or
C843_OpenPiStagesEditDialog() functions are provided for
compatibility reasons only and should not be used to open the
PIStageEditor. Since the PIStageEditor is not modal, problems can
occur when the calling application exits before the PIStageEditor
window is closed. Please start the PIStageEditor either from
PIMikroMove™ or via its executable.

If an older version of the software was installed an existing
C843UserStages.dat is automatically converted into
C843UserStages2.dat. For details see “Parameter Databases” on
p. 71.

BOOL C843_FUNC_DECL C843_AddStage (long iID, const char* szAxes)
BOOL C843_FUNC_DECL C843_RemoveStage (long iID, char *szStageName)
BOOL C843_FUNC_DECL C843_OpenUserStagesEditDialog (long iID)
BOOL C843_FUNC_DECL C843_OpenPiStagesEditDialog (long iID)

Release 4.0.0 www.pi.ws Page 17

C-843 GCS DLL Software Manual MS112E

4. C-843 GCS DLL Function Reference (alphabetical)

BOOL C843_FUNC_DECL C843_ACC (long iID, const char* szAxes, const double * pdValarray)

 Corresponding GCS command: ACC
Set the acceleration of szAxes.
During vectorial moves started with C843_MVE(), velocities, accelerations and decelerations will be
calculated to ensure that all axes follow the path. The current settings for velocity, acceleration and
deceleration define the maximum possible values, and the slowest axis determines the resulting velocities.
Arguments:

iID ID of controller
szAxes string with axes
pdValarray accelerations for the axes

Note: The value in pdValarray is limited by the stage parameter 0x4A (maximum allowed acceleration;
see Motion Parameters, p. 61).
Returns:

TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_AddStage (long iID, const char* szAxes)

Adds the stage of the specified axis to the file C843UserStages2.dat with the user defined stages.
Arguments:

iID ID of controller
szAxes character of the axis.

Returns:
TRUE if successful, FALSE, if the buffer was too small to store the message

BOOL C843_FUNC_DECL C843_BRA (long iID, const char* szAxes, const BOOL * pbValarray)

Corresponding GCS command: BRA
Set brake state for szAxes to on (TRUE) or off (FALSE)
CAUTION: Setting the brake with C843_BRA() does not affect the servo state of the axis. I.e. if you
activate the brake, the servo remains on so that the motor may work against the brake which can cause
overheating. In this case, it may be necessary to switch the servo off temporarily. Do not deactivate the
brake when the servo is switched off! Otherwise unwanted motion can occur. Unwanted motion could
cause irreparable damage to the stage and the application setup.
Note that the brake is activated automatically when the servo is switched off with C843_SVO(), and
deactivated when the servo is switched on.
Arguments:

iID ID of controller
szAxes string with axes
pbValarray modes for the specified axes, TRUE for on, FALSE for off

Returns:
TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 18

C-843 GCS DLL Software Manual MS112E

void C843_FUNC_DECL C843_CloseConnection (long iID)

Close connection to C-843 controller associated with ID = iID; the ID will no longer be valid.
Arguments:

iID ID of controller, if iID is not valid, nothing will happen.
Returns:

none

BOOL C843_FUNC_DECL C843_CLR (long iID, const char* szAxes)

 Corresponding GCS command: CLR
Clear status of szAxes.
The following actions are done by C843_CLR():
Switches the servo on.
Resets error to 0.
If the stage has tripped a limit switch, C843_CLR() will move it away from the limit switch until the limit
condition is no longer given, and the target position is set to the current position afterwards.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected

Returns:
TRUE if successful, FALSE otherwise

int C843_FUNC_DECL C843_Connect (long iBoardNumber)

Open a C-843 PCI board with the specified board number. Please read the C-843 manual to find out
which number to use. If you have installed only one board, use 1. All future calls to control this C-843 need
the ID returned by this call. Use C843_ListPCI to get a list of possible board numbers.
Arguments:

iBoardNumber: Board to use.
Returns:

-1 if connection failed, board ID otherwise

BOOL C843_FUNC_DECL C843_CST (long iID, const char* szAxes, const char * names)

 Corresponding GCS command: CST
Assigns szAxes to stages. This is done by loading stage parameters suitable for the connected hardware
from a stage database. Afterwards, the loaded values must be written to the controller by calling
C843_INI() to initialize the motion processor on the C-843 board.
Valid stage names can be listed with C843_qVST() which reports the content of the stage databases
(PIStages2.dat, C843Userstages2.dat, M-xxx.dat files) used by the C-843 GCS DLL.
If no stage is connected to the corresponding socket, or if motion of the axis is strictly forbidden, the stage
name should be “NOSTAGE”. This deactivates the axis which means that this axis is not available for
axis-related commands any more (e.g. motion commands, position queries). You can undo axis
deactivation at any time by setting a valid stage name with C843_CST().
Note: To connect a stage, always use C843_CST(). Do not set the Stage Name parameter (ID 0x3C) with
C843_SPA() for that purpose. Otherwise the stage parameters will not be loaded properly from the stage
database.
The stage names are separated by \n (line feed), for example "M-505.1PD\nM-505.2PD". See “Functions
for Initialization of the C-843 GCS DLL” (p. 12) for an example of how to setup the C-843 library.

Release 4.0.0 www.pi.ws Page 19

C-843 GCS DLL Software Manual MS112E

Arguments:
iID ID of controller
szAxes identifiers of the stages, if "" or NULL all axes are affected
names the names of the Stages separated by \n (line feed)

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_CTO (long iID, const long* iTriggerLinesArray, const long* iParamIDArray,
const char* szValues, long iArraySize)

 Corresponding GCS command: CTO
Configures the trigger output conditions for the given digital output line.
The trigger output will only become active when enabled with C843_TRO().
Arguments:

iID ID of controller
iTriggerLinesArray identifiers of the digital output lines located on the J8 (“All-axes”) connector on

the C-843 board (digital output from the motion processor, TTL, max. 5 mA).
with C-843.21: can be 1 and 2
with C-843.41: can be 1 to 4
The lines can be brought out of the PC housing using an adapter bracket with a sub-D 15m
connector (included with C-843).

iParamIDArray identifiers of the parameters to be set, available are
2 = Axis
3 = TriggerMode
7 = Polarity

szValues the values to which the parameters are to be set
for parameter identifier = 2:
the axis to connect to the trigger output line

for parameter identifier = 3:
2 = OnTarget
5 = Motion Error
6 = In Motion

for parameter identifier = 7:
0 = Active Low
1 = Active High

iArraySize number of trigger lines to be configured

Returns:
TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 20

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_DEC (long iID, const char* szAxes, const double * pdValarray)

 Corresponding GCS command: DEC
Set the deceleration of szAxes.
During vectorial moves started with C843_MVE(), velocities, accelerations and decelerations will be
calculated to ensure that all axes follow the path. The current settings for velocity, acceleration and
deceleration define the maximum possible values, and the slowest axis determines the resulting velocities.
Arguments:

iID ID of controller
szAxes string with axes
pdValarray decelerations for the axes

Note: The value in pdValarray is limited by the stage parameter 0x4B (maximum allowed deceleration;
see Motion Parameters, p. 61).
Returns:

TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_DFF (long iID, const char* szAxes, const double * pdValarray)

 Corresponding GCS command: DFF
Set the scaling factor for physical units for szAxes. This factor is applied to the counts-per-physical-unit
value (parameter 0xE / parameter 0xF). For example, a scaling factor of 25.4 sets the working units to
inches. Changing the scale factor will change the numerical results of other commands.
Note: To change the sacling factor for an axis, always use C843_DFF(). Do not set the Scaling Factor
parameter (ID 0x12) with C843_SPA(). Otherwise the scaling factor will not be applied properly.
Arguments:

iID ID of controller
szAxes string with axes
pdValarray factors for the axes

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_DFH (long iID, const char* szAxes)

 Corresponding GCS command: DFH
Makes current positions of szAxes the new home positions.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.

Returns:
TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 21

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_DIO (long iID, const char* szChannels, const BOOL * pbValarray)

 Corresponding GCS command: DIO
Switches the specified output line(s) to specified state(s). If pbValarray[index] is TRUE the mode is set to
HIGH, otherwise it is set to LOW. Can be used to trigger external devices.
Note that with some older C-843 hardware models, usage of the output lines and usage of the volatile
memory on the C-843 board (data recorder, User Profile mode) are mutually exclusive. This means that
after the C-843 board was connected in the software, only the functionality called first is available. The
selection is reset any time the C-843 board is reconnected. If, for example, the data recorder configuration
was queried with C843_qDRC() before C843_DIO() was called, you can not set the digital output lines
until you reconnect the C-843.
Arguments:

iID ID of controller
szChannels string with the identfiers of the digital output lines of the 26-pin IDC connector (J5) on the
C-843 board (A to H). They can be brought out of the PC housing using an adapter bracket with a
sub-D 25f connector (included with C-843).
pbValarray array containing the states of specified digital output channels, TRUE if HIGH, FALSE if
LOW

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_DRC (long iID, const long* iRecTableId, const char* sRecSourceId, const
long* iRecOption, const long* TriggerOption)

 Corresponding GCS command: DRC
Set data recorder configuration: determines the data source and the kind of data (RecOption) used for the
given data recorder table.
The record option set with C843_DRC() for data recorder table 1 is automatically changed to "actual
position" when a step response measurement is made with C843_STE().
If one data recorder table is deactivated by choosing record option 0 ("nothing is recorded"), all
subsequent tables are deactivated too. The points available for recording are in equal shares allocated to
the tables with non-zero record options (for the total number of points to allocate ask C843_qSPA()) with
parameter 0x16000200, for the maximum number of record tables ask C843_qTNR()). Note that the data
recorder shares the 32,256 points of volatile memory provided on the C-843 card (referred to as “external
RAM” in the MotionProcessor Users Guide) with the multi-axis motion profiles which can be created by the
User Profile Mode commands (C843_UPx functions). It may be necessary to free memory occupied by
user-defined motion profiles using C843_UPC() to have enough memory for data recording.
With C843_qHDR() you will obtain a list of available record options and trigger options and information
about additional parameters and commands regarding data recording.
Note that with some older C-843 hardware models, you can not use the data recorder if the digital output
lines have been set with C843_DIO() before any data-recorder-related command was sent. To use the
data recorder, reconnect the C-843 board in the software.
For detailed information see "Data Recording" in the C-843 GCS Commands manual (SM149E).
Arguments:

iID ID of controller
iRecTableId identifier of the data recorder table
sRecSourceId identifier of the axis of which the performance variable is to be recorded
iRecOption identifier of the performance variable (kind of data to be recorded), can be

0 = nothing is recorded
1 = commanded position of axis
2 = actual position of axis
3 = position error of axis
70 = commanded velocity of axis
71 = commanded acceleration of axis
72 = actual velocity of axis
73 = motor output of axis

Release 4.0.0 www.pi.ws Page 22

C-843 GCS DLL Software Manual MS112E

74 = chipset time
75 = capture register of axis
76 = integral of axis
77 = derivative of axis
78 = event status register of axis
79 = activity status register of axis
80 = signal status register of axis
82 = PID servo error of axis (input of PID servo filter)

iTriggerOption not used
Returns:

TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_DRT (long iID, const long* iRecTableId, const long* TriggerOption, const
char* sValue, long iArrayLength)

 Corresponding GCS command: DRT
Defines a trigger source.
By default data recording is triggered when a step response measurement is made with C843_STE().
A trigger option set with C843_DRT() will become valid for all data recorder tables with non-zero record
option.
With C843_qHDR() you will obtain a list of available record options and trigger options and information
about additional parameters and commands regarding data recording.
Note that with some older C-843 hardware models, you can not use the data recorder if the digital output
lines have been set with C843_DIO() before any data-recorder-related command was sent. To use the
data recorder, reconnect the C-843.
For detailed information see "Data Recording" in the C-843 GCS Commands manual (SM149E).
Arguments:

iID ID of controller
iRecTableId identifier of the record table ID. Here, only the pseudo ID “0” is valid, and one setting
has effect on all data recorder channels
iTriggerOption identifier of the trigger to be used. Available identifiers are:

0 = default setting; data recording is triggered with C843_STE()
1 = any command changing position (e.g. C843_MVR(), C843_MOV(), C843_SMO())
2 = next command, resets trigger after execution
4 = start on InMotion, stop on AxisSettled
5 = start immediately, stop on AxisSettled

sValue not used
iArrayLength number of table IDs to be configured, must be 1

Returns:

TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 23

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_EGE (long iID, const char* szAxes, BOOL * bValArray)

 Corresponding GCS command: EGE
Enable or disable electronic gearing mode for given axis. If bValarray[index] is TRUE the mode is set to
ON, otherwise it is set to OFF.
Via electronic gearing a "master" and a "geared" (slave) axis are linked, so that motion of the master
automatically entails proportional motion of the slave.
Enabling electronic gearing with C843_EGE() for an axis means that this axis will be linked as slave to the
master axis selected with C843_MAS(). The gear ratio to be applied can be set with C843_SRA(). Master
selection and ratio setting for an axis are only possible if electronic gearing is disabled for that axis. The
ratio setting is checked automatically upon the activation of electronic gearing. If the slave axis is not able
to follow the master axis, you have to adapt the ratio value.
Electronic gearing can only be enabled for axes which are referenced. Reference moves are not allowed
for axes which are involved in electronic gearing (as master or slave), and their referencing mode can not
be changed.
A slave axis can not be commanded directly by move commands. It is only moved when its master axis
moves. When motion is commanded for the master axis, the available travel ranges for master and slave
are checked.
Joystick operation is possible for master axes. Slave axes connected to a joystick-controlled master will
move correspondingly. Slave axes can not be assigned to joystick axes, i.e. they can not be controlled
directly by a joystick. If joystick control is enabled for an axis, electronic gearing can not be enabled for
that axis.
Arguments:

iID ID of controller
szAxes string with axis identifiers
bValarray array containing the states of the electronic gearing mode of the specified axes, TRUE if
ON, FALSE if OFF

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_FED (long iID, const char* szAxes, const long* iEdgeIDArray, const long*
iParArray)

 Corresponding GCS command: FED
Move given Axes to a given signal edge. Call C843_IsReferencing() (p.31) to find out if an axis is still
moving and C843_qFES() (p. 41) to get the result from the controller. The controller will be "busy" while
referencing, so most other commands will cause a PI_CONTROLLER_BUSY error. Use C843_STP()
(p.56) to stop it.
Notes:
In contrast to the referencing functions (C843_MNL, C843_MPL, C843_REF, C843_FNL, C843_FPL and
C843_FRF), this function does not change the reference state of the axis and does not set a certain
position value at the selected edge. It does move out of the limit condition, therefore the axis motion
finishes at the same position as with the corresponding referencing functions.
If multiple axes are given, they are moved synchronously.
The C-843 GCS DLL detects the presence or absence of reference switch and limit switches using
parameters (ID 0x14 for reference switch; ID 0x32 for limit switches). According to the values of those
parameters, the C-843 GCS DLL enables or disables C843_FED motions to the appropriate signal edges.
You can adapt the parameter values to your hardware using C843_SPA. See "Motion Parameter" (p. 61)
for more information.
C843_FED can be used to measure the physical travel range of a new mechanics and thus to identify the
values for the corresponding parameters: the distance from negative to positive limit switch, the distance
between the negative limit switch and the reference switch (DISTANCE_REF_TO_N_LIM, parameter ID
0x17), and the distance between reference switch and positive limit switch (DISTANCE_REF_TO_P_LIM,
parameter ID 0x2F). See "Travel Range Adjustment" (p. 68) for more information.

Release 4.0.0 www.pi.ws Page 24

C-843 GCS DLL Software Manual MS112E

Motion commands like C843_FED are not allowed when the joystick is active for the axis.
If the position error of an axis falls out of the window formed by the Maximum position error parameter, the
servo is switched off automatically for that axis, motion of all other axes is stopped immediately, and error
code -1024 is set.
Arguments:

iID ID of controller
szAxes axes to move.
iEdgeIDArray identifier of the edge to which the stage is to be moved. The following edge types with

their parameter settings are available:
1 = negative limit switch, iParArray is 0 when the default setting should be used (e.g. from

Pistages2.dat), 1 when active high, -1 when active low
2 = positive limit switch, iParArray is 0 when the default setting should be used (e.g. from

Pistages2.dat), 1 when active high, -1 when active low
3 = reference switch, iParArray is 0 when the default setting should be used (e.g. from

Pistages2.dat), 1 when active high, -1 when active low
4 = autofind additional switch changing its state at a certain position (signal must be connected to

the digital input line of the motion processor which corresponds to the axis given in
C843_FED() (All-axes connector J8 on the C-843 board)), iParArray gives the signal state to
the left of the edge (high = 1 or low = -1)

iParArray parameter to define the polarity of the signal in which the edge is to be searched for
Returns:

TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_FNL (long iID, const char* szAxes)

 Corresponding GCS command: FNL
Moves all axes szAxes synchronously to their negative limit switch. This can be used for fast referencing
of multiple axes which have no reference switch. Call C843_IsReferencing() (p.31) to find out if an axis is
still moving and C843_qFRF() (p. 41) to get the result from the controller. The controller will be "busy"
while referencing, so most other commands will cause a PI_CONTROLLER_BUSY error. Use
C843_STP() (p.56) to stop it.
Notes:
Calling the C843_FNL() function resets the current positions of the axes. Therefore moving the axes to
the same position using MOV() (absolute move) before and after a call of this function may move the
stage to a different physical position! You should call C843_FNL() only once after a call of C843_INI().
To reference axes one after the other, use C843_MNL() (p.33) instead.
Arguments:

iID ID of controller
szAxes axes to move.

Returns:
TRUE if successful, FALSE otherwise

Errors:
 PI_UNKNOWN_AXIS_IDENTIFIER cAxis is not a valid axis identifier

Release 4.0.0 www.pi.ws Page 25

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_FPL (long iID, const char* szAxes)

 Corresponding GCS command: FPL
Moves all axes szAxes synchronously to their positive limit switch. This can be used for fast referencing of
multiple axes which have no reference switch. Call C843_IsReferencing() (p.31) to find out if an axis is
still moving and C843_qFRF() (p. 41) to get the result from the controller. The controller will be "busy"
while referencing, so most other commands will cause a PI_CONTROLLER_BUSY error. Use
C843_STP() (p.56) to stop it.
Notes:
Calling the C843_FPL() function resets the current positions of the axes. Therefore moving the axes to
the same position using MOV() (absolute move) before and after a call of this function may move the
stage to a different physical position! You should call C843_FPL() only once after a call of C843_INI().
To reference axes one after the other, use C843_MPL() (p.34) instead.
Arguments:

iID ID of controller
szAxes axes to move.

Returns:
TRUE if successful, FALSE otherwise

Errors:
 PI_UNKNOWN_AXIS_IDENTIFIER cAxis is not a valid axis identifier

BOOL C843_FUNC_DECL C843_FRF (long iID, const char* szAxes)

 Corresponding GCS command: FRF
Fast (synchronous) reference move of all axes szAxes. Call C843_IsReferencing() (p.31) to find out if the
axes are still moving and C843_qFRF() (p. 41) to get the results from the controller. The controller will be
"busy" while referencing, so most other commands will cause a PI_CONTROLLER_BUSY error. Use
C843_STP() (p.56) to stop it.
Notes:
Calling the C843_FRF function resets the current positions. That means moving to the same position
using the MOV() command (absolute move) before and after a call of this function may move the stage to
a different physical position! You should call this function only once after a call of C843_INI().
To reference axes one after the other, use C843_REF() (p.51) instead.
Arguments:

iID ID of controller
szAxes string with axes

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_GcsCommandset (long iID, const char* szCommand)

Sends a GCS command to the C-843. Any GCS command can be sent, but this command is intended for
commands not having a function in the current version of the library.
Arguments:

iID ID of controller
szCommand the GCS command as string.

Returns:
TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 26

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_GcsGetAnswer (long iID, const char* szAnswer, long bufsize)

Gets the answer of a GCS command. The answers of a GCS command are buffered inside the DLL. This
is to be compatible to the PI controllers which are connected via an external interface. The buffer
simulates the interface. Each call to this function returns the oldest answer in the buffer.
Arguments:

iID ID of controller
szAwnser the buffer to take the answer.
bufsize the buffer size of the answer.

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_GcsGetAnswerSize (long iID, long * iAnswerSize)

Gets the size of an answer of a GCS command.
Arguments:

iID ID of controller
iAnswerSize pointer to take the size of the next answer.

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_GetAsyncBuffer (long iID, double **pnValArray)

Get address of internal buffer used for storing data read in by a call to C843_qDRR().
Arguments:

iID ID of controller
pnValarray pointer to receive address of internal array used to store the data, the DLL will have
allocated enough memory to store all data; call C843_GetAsyncBufferIndex() to find out how many
data points have been transferred up to that time.

Returns:
TRUE if successful, FALSE otherwise

long C843_FUNC_DECL C843_GetAsyncBufferIndex (long iID)

Get index used for the internal buffer filled with data read in by a call to C843_qDRR().
Arguments:

iID ID of controller
Returns:

Index of the data element which was last read in, -1 otherwise

long C843_FUNC_DECL C843_GetError (long iID)

Get error status of C-843. If there is no internal error this function will call C843_qERR() (p.40).
Returns:

error ID, see Error Codes (p.61) for the meaning of the codes.

Release 4.0.0 www.pi.ws Page 27

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_GetInputChannelNames (long iID, char * szBuffer, const long maxlen)

Get valid character identifiers for installed digital input channels. Each character in the returned string is
the valid channel identifier of an installed digital input channel.
Notes:
C843_GetInputChannelNames reports the identifiers for the digital input lines on the 26-pin IDC
connector (J5) of the C-843 board. They can be brought out of the PC housing using an adapter bracket
with a sub-D 25f connector (included with C-843). The input lines on the 16-pin IDC connector (J8) are not
contained in the response to C843_GetInputChannelNames.
Call C843_qDIO() (p.47) to query the states of the digital input channels.
Arguments:

iID ID of controller
szBuffer buffer for storing the identifier string
maxlen size of szBuffer, must be given to avoid a buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_GetOutputChannelNames (long iID, char * szBuffer, const long maxlen)

Get valid character identifiers for installed digital output channels. Each character in the returned string is
the valid channel identifier of an installed digital output channel.
Notes:
C843_GetInputChannelNames reports the identifiers for the digital output lines on the 26-pin IDC
connector (J5) of the C-843 board. They can be brought out of the PC housing using an adapter bracket
with a sub-D 25f connector (included with C-843). The output lines on the 16-pin IDC connector (J8) are
not contained in the response to C843_GetOutputChannelNames.
Call C843_DIO() (p.22) to set the states of the digital outputs.
Arguments:

iID ID of controller
szBuffer buffer for storing the identifier string
maxlen size of szBuffer, must be given to avoid a buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_GetQMC (long iID, BYTE bCmd, BYTE bAxis, int * pResult)

Sends a QMC query command to the C-843 controller.
Arguments:

iID ID of controller
bCmd the QMC command.
bAxis the axis (The first axis is axis 0).
pResult pointer to the result.

Returns:
TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 28

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_GetQMCA (long iID, BYTE bCmd, BYTE bAxis, WORD lParam, int *
pResult)

Sends a QMC query command with one argument to the C-843 controller.
Arguments:

iID ID of controller
bCmd the QMC command.
bAxis the axis (The first axis is axis 0).
lParam the argument.
pResult pointer to the result.

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_GetRefResult (long iID, const char* szAxes, BOOL * pnResult)

Get results of last call to C843_REF() (p.51), C843_MNL() (p.33) or C843_MPL() (p.34). If still
referencing, or no reference move was started since startup of library, the result is 0. Call C843_qREF()
(p.44) to see which axes have a reference. To reference an axis call C843_REF() (p.51) for axes with
reference or C843_MNL() (p.33) or C843_MPL() (p.34) for axes without reference. For fast (synchronous)
referencing of multiple axes call C843_FRF() (p. 26) for axes with reference or C843_FNL() (p. 25) or
C843_FPL() (p. 26) for axes without reference. Call C843_IsReferencing() to find out if there are axes
(still) referencing.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
pnResult 1 if successful, 0 if reference move failed, has not finished yet or axis has no reference

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_GOH (long iID, const char* szAxes)

 Corresponding GCS command: GOH
Move all axes in szAxes to their home positions.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_HLT (long iID, const char* szAxes)

 Corresponding GCS command: HLT
Halt motion of szAxes smoothly.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.

Returns:
TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 29

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_INI (long iID, const char* szAxes)

 Corresponding GCS command: INI
Initializes motion control chip for szAxes.
The following actions are done by C843_INI():
Writes the stage parameters which were loaded with C843_CST() from the stage database to the
controller.
Switches the servo on.
Sets reference mode to 1, i.e. C843_REF(), C843_FRF(), C843_MNL(), C843_FNL(), C843_MPL() or
C843_FPL() is required to reference the axis, usage of C843_POS() is not allowed.
Sets reference state to "not referenced".
If the stage has tripped a limit switch, C843_INI() will move it away from the limit switch until the limit
condition is no longer given, and the target position is set to the current position afterwards.
Sets trigger output mode to default configuration.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_IsConnected (long iID)

Check if there is a C-843 controller with an ID of iID.
Returns:

TRUE if iID points to an exisiting controller, FALSE otherwise.

BOOL C843_FUNC_DECL C843_IsControllerReady (const long iID, long* piControllerReady)

Corresponding command: #7 (ASCII 7)
Asks controller for ready status (tests if controller is ready to perform a new command).
Arguments:

iID ID of controller
piControllerReady status of the controller:
B1h (ASCII character 177 = "±" in Windows) if controller is ready
B0h (ASCII character 176 = "°" in Windows) if controller is not ready (e.g. performing a referencing
command)

Returns:
TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 30

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_IsMoving (long iID, const char* szAxes, BOOL * pbValarray)

Check if szAxes are moving. If an axis is moving the corresponding element of the array will be TRUE,
otherwise FALSE. If no axes were specified, only one boolean value is returned and pbValarray[0] will
contain a generalized state: TRUE if at least one axis is moving, FALSE if no axis is moving.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
pbValarray status of the axes

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_IsReferenceOK (long iID, const char* szAxes, BOOL * pbValarray)

Check the reference status of the given axes. Call C843_qREF() (p.44) to find out which axes have a
reference. To reference an axis call C843_REF() (p.51) for axes with reference, or C843_MNL() (p.33) or
C843_MPL() (p.34) for axes without reference. For fast (synchronous) referencing of multiple axes call
C843_FRF() (p. 26) for axes with reference or C843_FNL() (p. 25) or C843_FPL() (p. 26) for axes without
reference.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
pbValarray TRUE if the axis is referenced, FALSE if not

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_IsReferencing (long iID, const char* szAxes, BOOL * pbIsReferencing)

Check if C-843 is busy with referencing.
Note:

 If you do not specify any axis, you will get back only one BOOL. It will be TRUE if the controller is
referencing any axis.

Arguments:
iID ID of controller
szAxes string with axes, if "" or NULL overall state is returned.
pbIsReferencing status of axes or controller, TRUE if referencing, FALSE otherwise

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_IsUserProfileActive (long iID, const char* szAxes, BOOL * pbValarray)

 Corresponding GCS command: #9
Check if szAxes are moving in User Profile Mode. If an axis is moving in UP mode the corresponding
element of the array will be TRUE, otherwise FALSE. If no axes were specified, only one boolean value is
returned and pbValarray[0] will contain a generalized state: TRUE if at least one axis is moving in UP
mode, FALSE if no axes are moving in UP mode.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
pbValarray array to receive status of the specified axes or of the axes as a group

Returns:
TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 31

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_JAX (long iID, long iJoystickID, long iAxesID, const char* szAxesBuffer)

 Corresponding command: JAX
Set axis controlled by a joystick connected to the PC.

Each axis of the controller can only be controlled by one joystick axis.

For joystick control, connect the joystick device to the PC before you start the C-843 GCS
DLL (which is called, for example, if you connect to the C-843 in PIMikroMove™ or in
PITerminal). Otherwise the joystick will not be recognized by the software. Avoid removing
and reconnecting the joystick at run time of the software since this can cause unpredictable
results.

Joystick control must be enabled with C843_JON().

See "Joystick Control" in the C-843 GCS Commands manual (SM149E) for details.
Arguments:

iID ID of controller
iJoystickID joystick device connected to the PC
iAxesID ID of the joystick axis
szAxesBuffer name(s) of the axis or axes to be controlled by this joystick axis

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_JON (long iId, const long* iJoystickIDsArray, const BOOL* pbValueArray,
long iArraySize)

 Corresponding command: JON
Enable or disable a joystick device which is connected to the PC.
For joystick control, connect the joystick device to the PC before you start the C-843 GCS DLL (which is
called, for example, if you connect to the C-843 in PIMikroMove™ or in PITerminal). Otherwise the joystick
will not be recognized by the software. Avoid removing and reconnecting the joystick at run time of the
software since this can cause unpredictable results.
For joystick control of a controller axis, this axis must be assigned to a joystick axis with C843_JAX().
While a joystick connected to the C-843 is enabled with C843_JON(), this joystick controls the axis
velocity. In open-loop mode (servo off) no joystick operation is possible. When disabling a joystick, the
target position is set to the current position for joystick-controlled axes.
Motion commands like C843_MOV() are not allowed when a joystick is active on the axis.
See "Joystick Control" in the C-843 GCS Commands manual (SM149E) for details.
Arguments:

iID ID of controller
iJoystickIDsArray array with joystick devices connected to the controller
pbValarray pointer to array with joystick enable states (0 for deactivate, 1 for activate)
iArraySize size of arrays

Returns:
TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 32

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_ListPCI (char* szIDList, long maxlen)

Receive a list of possible board numbers to be used with C843_Connect(). The returned string holds lines
of numbers. For example, when there are two boards available with the board numbers 1 and 3, szIDList
will hold

“1<SP><LF>

3<LF>”

Arguments:
szIDList buffer for storing the string read in from DLL, lines are separated by SP LF (space, line feed)
maxlen size of buffer, must be given to avoid a buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_MAS (long iID, const char* szAxes, const char* szMasters)

 Corresponding GCS command: MAS
Set the electronic gearing master axes for szAxes. For details see C843_EGE().
Arguments:

iID ID of controller
szAxes string with “slave” axes
szMasters string with the master axes for the slaves in szAxes

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_MNL (long iID, const char* szAxes)

 Corresponding GCS command: MNL
Moves axis szAxes to its negative limit switch. This can be used to reference an axis without a reference
switch. For fast (synchronous) referencing of multiple axes call C843_FNL() (p. 25) instead. Call
C843_IsReferencing() (p.31) to find out if an axis is still moving and C843_GetRefResult() (p.29) to get
the result from the controller. The controller will be "busy" while referencing, so most other commands will
cause a PI_CONTROLLER_BUSY error. Use C843_STP() (p.56) to stop it.
Note: Calling the C843_MNL() function resets the current position. Therefore moving the axis to the same
position using MOV() (absolute move) before and after a call of this function may move the stage to a
different physical position! You should call C843_MNL() only once after a call of the INI() command.
Arguments:

iID ID of controller
szAxes axes to move.

Returns:
TRUE if successful, FALSE otherwise

Errors:
 PI_UNKNOWN_AXIS_IDENTIFIER cAxis is not a valid axis identifier

Release 4.0.0 www.pi.ws Page 33

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_MOV (long iID, const char* szAxes, const double * pdValarray)

 Corresponding GCS command: MOV
Move szAxes to absolute position.
Arguments:

iID ID of controller
szAxes string with axes
pdValarray target positions of the axes

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_MPL (long iID, const char* szAxes)

 Corresponding GCS command: MPL
Moves axis szAxes to its positive limit switch. This can be used to reference an axis without a reference
switch. For fast (synchronous) referencing of multiple axes call C843_FPL() (p. 26) instead. Call
C843_IsReferencing() (p.31) to find out if the axis is still moving and C843_GetRefResult() (p.29) to get
the result from the controller. The controller will be "busy" while referencing, so most other commands will
cause a PI_CONTROLLER_BUSY error. Use C843_STP() (p.56) to stop it.
Note: Calling the C843_MPL() function resets the actual position. Therefore moving the axis to the same
position using MOV() (absolute move) before and after a call of this function may move the stage to a
different physical position! You should call C843_MPL() only once after a call of the INI() command.
Arguments:

iID ID of controller
szAxes axes to move.

Returns:
TRUE if successful, FALSE otherwise

Errors:
 PI_UNKNOWN_AXIS_IDENTIFIER cAxis is no valid axis identifier

BOOL C843_FUNC_DECL C843_MVE (long iID, const char* szAxes, const double * pdValarray)

 Corresponding GCS command: MVE
Move szAxes absolutely on linear path. If the affected axes are mounted in a way that they move
perpendicular to each other, the combined motion of them will describe a linear path. This is achieved by
setting the accelerations, velocities and decelerations temporarily.
Arguments:

iID ID of controller
szAxes string with axes
pdValarray positions of the axes

Returns:
TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 34

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_MVR (long iID, const char* szAxes, const double * pdValarray)

 Corresponding GCS command: MVR
Move szAxes relatively.
Arguments:

iID ID of controller
szAxes string with axes
pdValarray positions of the axes

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_OpenPiStagesEditDialog (long iID)

Opens a dialog to look at the PiStages2.dat file, which contains the stages defined by PI. No changes can
be made to this file.
CAUTION: This function is provided for compatibility reasons only. It is not recommended to open the
PIStageEditor this way. Since the PIStageEditor is not modal, problems can occur when the calling
application exits before the PIStageEditor window is closed. Please start the PIStageEditor either from
PIMikroMove™ or via its executable to check stage parameter sets in PiStages2.dat.
Arguments:

iID ID of controller
Returns:

TRUE if successful, FALSE, if the buffer was too small to store the message

BOOL C843_FUNC_DECL C843_OpenUserStagesEditDialog (long iID)

Opens a dialog to edit, add and remove stages from the C843UserStages2.dat file, which contains the
user-defined stages.
CAUTION: This function is provided for compatibility reasons only. It is not recommended to open the
PIStageEditor this way. Since the PIStageEditor is not modal, problems can occur when the calling
application exits before the PIStageEditor window is closed. Please start the PIStageEditor either from
PIMikroMove™ or via its executable to edit, add or remove stage parameter sets in C843UserStages2.dat.
Arguments:

iID ID of controller
Returns:

TRUE if successful, FALSE, if the buffer was too small to store the message

Release 4.0.0 www.pi.ws Page 35

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_POS (long iID, const char* szAxes, const double * pdValarray)

 Corresponding command: POS
Sets absolute position for given axes. Reference mode for the axes must be OFF.
When reference mode is OFF only relative moves can be commanded (C843_MVR() (p.36)) until the
actual position is set with this command. See C843_RON() (p.51) for a detailed description of reference
mode and how to turn it on and off. For stages with neither reference nor limit switch, reference mode is
automatically OFF.
CAUTION:

The minimum and maximum commandable positions (C843_qTMN(), C843_qTMX()) are not adapted
when a position is set with C843_POS(). This may result in target positions which are allowed by the
software and cannot be reached by the hardware. Also target positions are possible which can be
reached by the hardware but are denied by the software. Furthermore, the home position can be
outside of the physical travel range after using C843_POS().

Arguments:
iID ID of controller
szAxes string with axes
pdValarray absolute positions for the specified axes

Returns:
TRUE if successful, FALSE otherwise

Errors:
 PI_CNTR_CMD_NOT_ALLOWED_FOR_STAGE if the reference mode for any of the given axes is
ON

BOOL C843_FUNC_DECL C843_qACC (long iID, const char* szAxes, double * pdValarray)

 Corresponding GCS command: ACC?
Get the accelerations of szAxes.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
pdValarray array to be filled with the accelerations of the axes

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qBRA (long iID, char * szBuffer, const long maxlen)

 Corresponding GCS command: BRA?
Get axes with brakes.
Arguments:

iID ID of controller
szBuffer buffer to store the read in string
maxlen size of buffer, must be given to avoid a buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 36

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_qCST (long iID, const char* szAxes, char * names, long maxlen)

 Corresponding GCS command: CST?
Get the type names of the stages connected to szAxes. The single names begin with the axis identifier+'='
and are separated by \n (line feed). For example "1=M-505.1PD\n2=M-505.2PD". When nothing was
configured, the unconfigured axes will be named "NOSTAGE". C843_qSAI() (p.45) will only return the
axes configured with C843_CST() (p.19), C843_qCST() (p.37) will always return all axes. See “Functions
for Initialization of the C-843 GCS DLL” (p.12) for an example of how to setup the C-843 library.
Arguments:

iID ID of controller
szAxes identifiers of the axes, if "" or NULL all axes are affected
names buffer for storing the string read in from controller, lines are separated by \n (line feed)
maxlen size of name, must be given to avoid a buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qCTO (long iID, const long* iTriggerLinesArray, const long* pParamIDArray,
char* szBuffer, long iArraySize, long iBufferMaxlen)

Corresponding command: CTO?
Get the Trigger Output configuration for the given trigger output line.
Arguments:

iID ID of controller
iTriggerLinesArray is an array with the trigger output lines of the controller
pParamIDArray is an array with the CTO parameter IDs, see C843_CTO() for details.
szBuffer buffer to receive the values to which the CTO parameters are set, see C843_CTO() for

details.
iArraySize is the size of the buffer iTriggerLinesArray
iBufferMaxlen is the size of the buffer szBuffer

Returns:
TRUE if no error, FALSE otherwise

BOOL C843_FUNC_DECL C843_qDEC (long iID, const char* szAxes, double * pdValarray)

 Corresponding GCS command: DEC?
Get the decelerations of szAxes.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
pdValarray array to be filled with the decelerations of the axes

Returns:
TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 37

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_qDFF (long iID, const char* szAxes, double * pdValarray)

 Corresponding GCS command: DFF?
Get scale factors for szAxes set with C843_DFF() (p.21).
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
pdValarray factors for the axes

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qDFH (long iID, const char* szAxes, double * pdValarray)

 Corresponding GCS command: DFH?
Get the home position in working units for szAxes.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
pdValarray home positions of the axes

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qDIO (long iID, const char* szChannels, BOOL * pbValarray)

 Corresponding GCS command: DIO?
Get the states for szChannels digital input channel(s).
Arguments:

iID ID of controller
szChannels string with the identfiers of the digital input lines of the 26-pin IDC connector (J5) on the
C-843 board (A to H). They can be brought out of the PC housing using an adapter bracket with a
sub-D 25f connector (included with C-843). If "" or NULL all channels are affected.
pbValarray states of digital input channel, TRUE if "HIGH", FALSE if "LOW"

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qDRC (long iID, const long* iRecTableIdArray, char* sRecSourceId, long*
iRecOptionArray, long* TriggerOption, long iArraySize)

Corresponding command: DRC?
Returns the data recorder configuration for the queried record table. The configuration can be changed
with C843_DRC(). The recorded data can be read with C843_qDRR().
Trigger options for recording can be set with C843_DRT() and read with C843_qDRT().
Arguments:

iID ID of controller
iRecTableIdArray array of the record table IDs.
sRecSourceId string to receive the record source (axis identifier).
iRecOptionArray array to receive the record option, i.e. the kind of data to be recorded, for the

possible options see C843_DRC()
TriggerOption not used
iArraySize the size of the arrays iRecTableIdArray, iRecOptionArray

Returns:
TRUE if no error, FALSE otherwise

Release 4.0.0 www.pi.ws Page 38

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_qDRR (long iID, const long* piRecTableIdsArray, long
iNumberOfRecChannels, long iOffset, long nrValues, double** pdValArray, char* szGcsArrayHeader, long
iGcsArrayHeaderMaxSize)

 Corresponding command: DRR?
Reading of the last recorded Data Set.
Reading can take long depending on the number of points to be read!
It is possible to read the data while recording is still in progress.
With nrValues = -1 all points of the last record are read.
If piRecTableIdsArray is empty, the data from all tables with non-zero record option (see C843_DRC()) is
read.
Step response measurements done with C843_STE() can also be read with C843_qSTE().
With C843_qHDR() you will obtain a list of available record options and trigger options and information
about additional parameters and commands regarding data recording.
Note that the data recorder shares the 32,256 points of volatile memory provided on the C-843 card
(referred to as “external RAM” in the MotionProcessor Users Guide) with the multi-axis motion profiles
which can be created by the User Profile Mode commands (C843_Upx() functions). It may be necessary
to free memory occupied by user-defined motion profiles using C843_UPC() to have enough memory for
data recording.
Note that with some older C-843 hardware models, you can not use the data recorder if the digital output
lines have been set with C843_DIO() before any data-recorder-related function was called. To use the
data recorder, reconnect the C-843.
For detailed information see "Data Recording" in the C-843 GCS Commands manual (SM149E).
Arguments:

iID ID of controller
piRecTableIdsArray IDs of data recorder tables
iNumberOfRecChannels number of data recorder tables to read
iOffset index of first value to be read (starts with index 1)
nrValues number of values to read
pdValarray pointer to internal array to store the data; data from all tables read will be placed in the

same array with the values interspersed; the DLL will allocate enough memory to store all data,
call C843_GetAsyncBufferIndex() to find out how many data points have already been
transferred

szGcsArrayHeader buffer to store the GCS array header
iGcsArrayHeaderMaxSize size of the buffer to store the GCS Array header, must be given to prevent

buffer overflow
Returns:

TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qDRR_SYNC (long iID, long iRecTableIdArray, long iOffset, long nrValues,
double* pdValArray)

Corresponding command: DRR?
Returns the data points of the last recorded data set.
For detailed information regarding data recording see the notes in C843_qDRR().
Arguments:

iID ID of controller
iRecordTableIdArray Id of the record table.
iOffset The start point in the specified record table (starts with index 1)
nrValues The number of values to read.
pdValArray array to receive the values

Returns:
TRUE if no error, FALSE otherwise

Release 4.0.0 www.pi.ws Page 39

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_qDRT (long iID, const long* iRecTableIdArray, long* TriggerOptionArray,
char* sValueArray, long iArraySize, long iValueBufferLength)

Corresponding command: DRT?
Returns the current trigger source setting for the given data recorder table.
Arguments:

iID ID of controller
iRecTableIdArray array of the record table IDs
TriggerOptionArray array to receive the trigger source, see C843_DRT() for details.
sValueArray array to receive the trigger-source-dependent values
iArraySize the size of the arrays iRecTableIdArray and TriggerOptionArray
iValueBufferLength is the size of sValueArray

Returns:
TRUE if no error, FALSE otherwise

BOOL C843_FUNC_DECL C843_qEGE (long iID, const char* szAxes, BOOL* valarray

 Corresponding GCS command: EGE?
Gets electronic gearing enable status for szAxes.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
pbValarray modes of the specified axes, TRUE for "on", FALSE for "off"

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qERR (long iID, long* pnError)

 Corresponding GCS command: ERR?
Get the error state of the controller. It is safer to call C843_GetError() (p.27) because this will also return
the internal error state of the library.
Arguments:

iID ID of controller
pnError error code of the controller

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qFED (long iID, const char* szAxes, long* iEdgeIDArray, long* iParArray)

 Corresponding GCS command: FED?
Get settings of the last commanded search for a signal edge.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
iEdgeIDArray identifier of edge to be searched
iParArray polarity definition of edge

Returns:
TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 40

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_qFES (long iID, const char* szAxes, BOOL* pbValarray)

 Corresponding GCS command: FES?
Get status of search for a signal edge.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
pbValarray result of search (1 = success, 0 = failure)

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qFRF (long iID, const char* szAxes, BOOL* pbValarray)

 Corresponding GCS command: FRF?
Get results of last call of the fast referencing functions C843_FRF() (p. 26), C843_FNL() (p. 25) or
C843_FPL() (p. 26. If still referencing, or no fast reference move was started since startup of library, the
result is 0. Call C843_qREF() (p. 44) to see which axes have a reference. For fast referencing of multiple
axes call C843_FRF() (p. 26) for axes with reference or C843_FNL() (p. 25) or C843_FPL() (p. 26) for
axes without reference. Call C843_IsReferencing() to find out if there are axes (still) referencing.
Note: To reference axes one after the other, use C843_REF() (p.51), C843_MNL() (p.33) or C843_MPL()
(p.34).
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
pbValarray 1 if successful, 0 if reference move failed, has not finished yet or axis has no reference

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qHDR (const long iID, char* Buffer, long maxlen)

Corresponding command: HDR?
Lists a help string which contains all information available for data recording (record options and trigger
options, information about additional parameters and commands regarding data recording).
For more information regarding data recording see the notes in C843_qDRR().
Arguments:

iID ID of controller
Buffer buffer to receive the string read in from controller, lines are separated by '\n' ("line-feed")
maxlen size of Buffer, must be given to avoid buffer overflow.

Returns:
TRUE if no error, FALSE otherwise

BOOL C843_FUNC_DECL C843_qHLP (const long iID, char* buffer, long maxlen)

 Corresponding command: HLP?
Read in the help string provided by the C-843 GCS DLL. The answer is quite long (up to 3000 characters)
so be sure to provide enough space!.
Arguments:

iID ID of controller
buffer buffer to receive the string read in from the C-843 GCS DLL, lines are separated by line-feed
characters.
maxlen size of buffer, must be given to avoid buffer overflow.

Returns:

Release 4.0.0 www.pi.ws Page 41

C-843 GCS DLL Software Manual MS112E

TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qHPA (const long iID, char* buffer, long maxlen)

Corresponding command: HPA?
Lists a help string which contains all parameters provided by the C-843 GCS DLL with short descriptions.
See “Motion Parameters” beginning on p. 61 for parameter handling and for an appropriate list of all
parameters available for C-843 controller cards.
Arguments:

iID ID of controller
szBuffer buffer to receive the string read in from the C-843 GCS DLL, lines are separated by '\n'
("line-feed")
iBufferSize size of szBuffer, must be given to avoid buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qIDN (long iID, char * buffer, long maxlen)

 Corresponding GCS command: *IDN?
Get identification string of the controller.
Arguments:

iID ID of controller
buffer buffer for storing the string read in from controller
maxlen size of buffer, must be given to avoid a buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qJAX (long iId, const long* iJoystickIDsArray, const long* iAxesIDsArray,
long iArraySize, char* szAxesBuffer, long iBufferSize)

 Corresponding command: JAX?
Get axis controlled by a joystick which is connected to the PC.
See "Joystick Control" in the C-843 GCS Commands manual (SM149E) for details.
Arguments:

iID ID of controller
iJoystickIDsArray array with joystick devices connected to the PC
iAxesIDsArray array with IDs of the joystick axes
iArraySize size of arrays
szAxesBuffer buffer to receive the string read in from controller; will contain axis IDs of axes
associated with corresponding joystick axis
iBufferSize size of buffer, must be given to avoid buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qJON (long iID, const long* iJoystickIDsArray, BOOL* pbValueArray, long
iArraySize)

 Corresponding command: JON?
Get activation state of the given joystick which is connected to the PC. See also C843_JON().
See "Joystick Control" in the C-843 GCS Commands manual (SM149E) for details.
Arguments:

iID ID of controller

Release 4.0.0 www.pi.ws Page 42

C-843 GCS DLL Software Manual MS112E

iJoystickIDsArray array with joystick devices connected to the PC
pbValueArray pointer to array to receive the joystick enable states (0 for deactivate, 1 for activate)
iArraySize size of arrays

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qLIM (long iID, const char* szAxes, BOOL * pbValarray)

 Corresponding command: LIM?
Check if the given axes have limit switches
Arguments:

ID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
pbValarray array for limit switch info: TRUE if axis has limit switches, FALSE if not

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qMAS (long iID, const char* szAxes, char* szMasters)

 Corresponding command: MAS?
Get the electronic gearing master axes for szAxes. The second string is filled with the corresponding
master axes. e.g. szMasters [1] is the master for szAxes [1].
See C843_EGE(9 for further detailon electronic gearing.
Arguments:

iID ID of controller
szAxes string with “slave” axes
szMasters string to be filled with the master axes for the slaves in szAxes

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qMOV (long iID, const char* szAxes, double * pdValarray)

 Corresponding GCS command: MOV?
Read the commanded target positions for szAxes.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
pdValarray array to be filled with target positions of the axes

Returns:
TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 43

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_qONT (long iID, const char* szAxes, BOOL * pbValarray)

 Corresponding GCS command: ONT?
Check if szAxes have reached target position.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
pbValarray array to be filled with current on-target status of the axes

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qPOS (long iID, const char* szAxes, double * pdValarray)

 Corresponding GCS command: POS?
Get the positions of szAxes.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
pdValarray positions of the axes

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qREF (long iID, const char* szAxes, BOOL * pbValarray)

 Corresponding GCS command: REF?
Check if the given axes have a reference
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
pbValarray TRUE if axis has a reference, FALSE if not

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qRON (long ID, const char* szAxes, BOOL * pbValarray)

 Corresponding command: RON?
Gets reference mode for given axes. See C843_RON() (p.51) for a detailed description of reference
mode.

Arguments:
ID ID of controller
szAxes string with axes
pbValarray array to receive reference modes for the specified axes

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qRTR (long iID, long* iRecordTableRate)

Corresponding command: RTR?
Gets the current record table rate, i.e. the number of servo-loop cycles used in data recording operations.
Arguments:

iID ID of controller
iRecordTableRate variable to be filled with the record table rate

Release 4.0.0 www.pi.ws Page 44

C-843 GCS DLL Software Manual MS112E

Returns:
TRUE if no error, FALSE otherwise

BOOL C843_FUNC_DECL C843_qSAI (long iID, char * axes, long maxlen)

 Corresponding GCS command: SAI?
Get connected axes. Each character in the returned string is an axis identifier for one connected and
configured axis. At startup of the library C843_qSAI() (p.45) will return an empty string. You must
configure the stages with calls to C843_CST() (p.19) and C843_INI() (p. 30) before you can use them.
See “Functions for Initialization of the C-843 GCS DLL” (p. 12) for an example of how to setup the C-843
library.
Arguments:

iID ID of controller
axes buffer to store the read in string
maxlen size of buffer, must be given to avoid a buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qSAI_ALL (long iID, char * axes, long maxlen)

 Corresponding GCS command: SAI? ALL
Get all possible axes, and not only all connected and configured axes as returned by C843_qSAI(). Each
character in the returned string is an axis identifier for one possible axis.
Arguments:

iID ID of controller
axes buffer to store the read in string
maxlen size of buffer, must be given to avoid a buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qSMO (long iID, const char* szAxes, long* pnValarray)

 Corresponding GCS command: SMO?
Get the motor output.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
pnValarray motor output for the specified axes

Returns:
TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 45

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_qSPA (long iID, const char* szAxes, const long * iCmdarray, double *
dValarray, char * szStageNames, long iMaxNameSize)

 Corresponding GCS command: SPA?
Read parameters for szAxes. For each desired parameter you must specify an axis in szAxes and a
parameter ID in the corresponding element of iCmdarray. The most important parameter IDs are the
servo loop parameters listed below. For a complete list, see “Parameter List”, p. 62.

• 0x1 for P-Term
• 0x2 for I-Term
• 0x3 for D-Term
• 0x4 for I-Limit (integration limit)
• 0x5 for VFF (velocity feed forward)
• 0x6 for Kout (output scale factor)
• 0x7 for Bias (motor bias)
• 0x8 for the maximum position error

Arguments:

iID ID of controller
szAxes axis for which the parameter should be read
iCmdarray IDs of parameter
dValarray array to be filled with the values for the parameters
szStageNames string when needed, set to NULL if a numeric values is used
iMaxNameSize size of szStageNames

Returns:
TRUE if successful, FALSE otherwise

Errors:
 PI_INVALID_SPA_CMD_ID one of the IDs in iCmdarray is not valid, must be one of {1,2,3}

BOOL C843_FUNC_DECL C843_qSRA (long iID, const char* szAxes, double* pdValarray)

 Corresponding command: SRA?
Gets the electronic gear ratio for szAxes. See C843_EGE() for further details regarding electronic gearing.
Parameters:

iID ID of controller
szAxes string with “slave” axes
pdValarray array to be filled with ratios for the axes

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qSRG (long iID, const char* szAxes, const long* iCmdarray, long* iValarray)

 Corresponding GCS command: SRG?
Get the content of the status registers for szAxes.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
iCmdarray register to be queried, if "" or NULL all registers are affected:

1 = Event Status register
2 = Activity Status register
3 = Signal Status register
4 = Signal Sense mask
For detailed descriptions of the registers see the Motion Processors User Guide on the C-843
CD. Note that the states of the digital input and output lines located on the J8 (“All-axes”)
connector on the C-843 board are provided in the Signal Status register (AxisIn and AxisOut
bits).

Release 4.0.0 www.pi.ws Page 46

C-843 GCS DLL Software Manual MS112E

iValarray register content of the specified axes for the given register; see
MotionProcessor_UsersGuide.pdf on the C-843 CD for details.

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qSTE (long iID, char cAxis, long iOffset, long nrValues, double *
pdValarray)

 Corresponding GCS command: STE?
Get the recorded positions of a step response. The controller will move the given axis to the target position
and record 32256 position values from start. Call C843_STE() (p.56) to start the step response
measurement.
Arguments:

iID ID of controller
cAxis axis for which the step response was recorded
iOffset index of first value to be read, the first stored value has index 0
nrValues number of values to be read. At most 32256 positions are stored.
pdValarray Array to store the position values. Caller is responsible for providing enough space for
nrValues doubles

Returns:
TRUE if successful, FALSE otherwise

Errors:
 PI_INVALID_ARGUMENT the combination of iOffset and nrValues specifies values out of range

BOOL C843_FUNC_DECL C843_qSVO (long iID, const char* szAxes, BOOL * pbValarray)

 Corresponding GCS command: SVO?
Get the servo mode for szAxes
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
pbValarray modes of the specified axes, TRUE for "on", FALSE for "off"

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qTIO (long iID, long* pINr, long* pONr)

 Corresponding GCS command: TIO?
Get the number of digital input and output channels installed. Call C843_GetInputChannelNames() (p.27)
and C843_GetOutputChannelNames() (p.28) to find out how to address them
C843_qTIO() queries the number of digital IO lines on the 26-pin IDC connector (J5). The IO lines on the
16-pin IDC connector (J8) are not contained in the C843_qTIO() response. See “External Triggering /
Signaling” in the C-843 GCS Commands manual for more information.
Arguments:

iID ID of controller
pINr pointer for storing the number of digital input channels installed
pONr pointer for storing the number of digital output channels installed

Returns:
TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 47

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_qTMN (long iID, const char* szAxes, double * pdValarray)

 Corresponding GCS command: TMN?
Get the low end of travel range of szAxes in working units.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
pdValarray minimum travel range of the axes

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qTMX (long iID, const char* szAxes, double * pdValarray)

 Corresponding GCS command: TMX?
Get the high end of the travel range of szAxes in working units.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
pdValarray maximum travel range of the axes

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qTNR (long iID, long* iNrOfTables)

Corresponding command: TNR?
Returns the number of data recorder tables.
For more information regarding data recording see the notes in C843_qDRR.
Arguments:

iID ID of controller
iNrOfTables variable to receive number of data recorder tables

Returns:
TRUE if no error, FALSE otherwise

BOOL C843_FUNC_DECL C843 C843_qTRO (long iID, const long* iTriggerLinesArray, BOOL* pbValarray,
long iArraySize)

 Corresponding command: TRO?
Gets trigger output-mode enable-status for given trigger output line (the trigger output configuration is
made with C843_CTO()).
Arguments:

iID ID of controller
iTriggerLinesArray is an array with the trigger output lines of the C-843 card. See C843_CTO() for
details.
pbValarray pointer to array to receive modes of the specified trigger lines: TRUE for "enabled",
FALSE for "disabled"
iArraySize number of trigger lines

Returns:
TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 48

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_qTVI (long iID, char * axes, long maxlen)

 Corresponding GCS command: TVI?
Get valid characters for axes. Each character in the returned string is a valid axis identifier that can be
used to "name" an axis.
Arguments:

iID ID of controller
axes buffer to store the read in string
maxlen size of buffer, must be given to avoid a buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qUPA (long iID, const char* szClusters, const long* iCmdarray, long*
iPararray)

 Corresponding GCS command: UPA?
User Profile Mode; Gets the numbers of the Blocks from which the specified Datasets originated.
Arguments:

iID ID of controller
szClusters string with clusters
iCmdarray indices of datasets in clusters
iPararray array to receive numbers of blocks from which corresponding datasets originated. Values
of -1 indicate that no block has been activated for the corresponding Dataset index.

Returns:

TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qUPB (long iID, const char* szClusters, const long* iCmdarray, const long*
iPararray, long* iValarray)

 Corresponding GCS command: UPB?
User Profile Mode: Reads Data Block configuration
Arguments:

iID ID of controller
szClusters string with clusters
iCmdarray indices of corresponding block in each cluster
iPararray parameter ID of corresponding parameter to read
iValarray array to receive values of parameters being queried

Returns:
TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 49

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_qUPC (long iID, char* szClusters, char* szAxes, long* iCmdarray, long*
iPararray)

 Corresponding GCS command: UPC?
User Profile Mode: Read cluster configuration.
Arguments:

iID ID of controller
szClusters string with clusters; if “” or null, all defined Clusters are queried.
szAxes string to receive axes assigned to corresponding clusters (must have sufficient length)
iCmdarray array to receive number of datasets in the corresponding clusters
iPararray array to receive the lengths of the datasets in the corresponding clusters

Returns:

TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qUPD (long iID, const char* szClusters, const long* iCmdarray, const long*
iPararray,double* dValarray)

 Corresponding GCS command: UPD?
User Profile Mode: Read values from datasets.
Arguments:

iID ID of controller
szClusters string with clusters
iCmdarray array with indices of blocks of corresponding clusters
iPararray array with numbers of datasets in corresponding blocks of corresponding clusters
dValarray array to receive values from queried datasets; size must be ≥ sum of the lengths of the
queried datasets (max. 5 x length of szClusters)

Returns:

TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qVEL (long iID, const char* szAxes, double * pdValarray)

 Corresponding GCS command: VEL?
Get the velocities of szAxes.
Arguments:

iID ID of controller
szAxes string with axes, if "" or NULL all axes are affected.
pdValarray array to be filled with the velocities of the axes

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_qVER (long iID, char* szVersion, int iBufferSize)

 Corresponding command: VER?
Reports the versions of drivers and libraries used.
Arguments:

iID ID of controller
szVersion buffer for storing the string read in
iBufferSize size of szVersion, must be given to avoid buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 50

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_qVST (long iID, char * buffer, long maxlen)

 Corresponding GCS command: VST?
Lists the names of stages selectable by C843_CST().
The list comprises the content of the stage databases (PIStages2.dat, C843Userstages2.dat, M-xxx.dat
files) used by the C843_GCS_DLL. See “Parameter Databases” on p. 71 for more information.
Arguments:

iID ID of controller
buffer buffer for storing the string read in from controller, lines are separated by \n (line feed)
maxlen size of buffer, must be given to avoid a buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_REF (long iID, const char* szAxes)

 Corresponding GCS command: REF
Reference move of szAxes. For fast (synchronous) referencing of multiple axes call C843_FRF() (p. 26)
instead. Call C843_IsReferencing() (p.31) to find out if the axes are still moving and
C843_GetRefResult() (p.29) to get the results from the controller. The controller will be "busy" while
referencing, so most other commands will cause a PI_CONTROLLER_BUSY error. Use C843_STP()
(p.56) to stop it.
Note: Calling the C843_Ref function resets the current position. That means moving to the same position
using the MOV() command (absolute move) before and after a call of this function may move the stage to
a different physical position! You should call this function only once after a call of the INI() command.
Arguments:

iID ID of controller
szAxes string with axes

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_RemoveStage (long iID, char * szStageName)

Removes the stage with the given name from the C843UserStages2.dat file, which contains the user-
defined stages.
Arguments:

iID ID of controller
szStageName the stage name as string.

Returns:
TRUE if successful, FALSE, if the buffer was too small to store the message

Release 4.0.0 www.pi.ws Page 51

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_RON (long iID, const char* szAxes, const BOOL * pbValarray)

 Corresponding command: RON
Sets reference mode for given axes.
If the reference mode of an axis is ON, the axis must be driven to the reference switch (C843_REF()
(p.51), C843_FRF() (p. 26) or, if no reference switch is available, to a limit switch (using C843_MPL()
(p.34), C843_FPL() (p. 26), C843_MNL() (p.33) or C843_FNL() (p. 25)) before any other motion can be
commanded.
If reference mode is OFF, no referencing is required for the axis. Only relative moves can be commanded
(C843_MVR() (p.36)), unless the actual position is set with C843_POS(). Afterwards, relative and absolute
moves can be commanded.
For stages with neither reference nor limit switch, reference mode is automatically OFF.
Arguments:

iID ID of controller
szAxes string with axes
pbValarray reference modes for the specified axes

Returns:
TRUE if successful, FALSE otherwise

Errors:
 PI_CNTR_STAGE_HAS_NO_LIM_SWITCH if the axes have no reference or limit switches, and
reference mode can not be switched ON

BOOL C843_FUNC_DECL C843_RTR (long iID, long iRecordTableRate)

Corresponding command: RTR
Sets the record table rate, i.e. the number of servo-loop cycles to be used in data recording operations.
Settings larger than 1 make it possible to cover longer time periods with a limited number of points.
C843_RTR() changes the value of the Data Recorder Table Rate parameter (ID 0x16000000), can also be
changed with C843_SPA().
Arguments:

iID ID of controller
iRecordTableRate is the record table rate to be used (unit: number of servo-loop cycles), must be
larger than zero

Returns:
TRUE if no error, FALSE otherwise

Release 4.0.0 www.pi.ws Page 52

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_SAI (long iID, const char* szOldAxes, const char* szNewAxes)

 Corresponding GCS command: SAI
Rename connected axes. szOldAxes[index] will be set to szNewAxes[index]. User can set the "names" of
axes with this function. The characters in szNewAxes must not be in use for any other existing axes and
must each be one of the valid identifiers. All characters in szNewAxes will be converted to uppercase
letters. To find out which characters are valid, call C843_qTVI() (p.49). Only the last occurence of an axis
identifier in szNewAxes will be used to change the name.
Arguments:

iID ID of controller
szOldAxes old axis identifiers
szNewAxes new identifiers for the axes

Returns:
TRUE if successful, FALSE otherwise

Errors:
 PI_INVALID_AXIS_IDENTIFIER if the any of the characters are not valid
 PI_UNKNOWN_AXIS_IDENTIFIER if szOldAxes contains any unknown axes
 PI_AXIS_ALREADY_EXISTS if one of szNewAxes is already in use
 PI_INVALID_ARGUMENT if szOldAxes and szNewAxes have different lengths or if a character in
szNewAxes is used for more than one old axis

BOOL C843_FUNC_DECL C843_SetErrorCheck (long iID, BOOL bErrorCheck)

Set error check mode of the library. With this call you can specify whether the library should check (with
"ERR?") the error state of the C-843 after sending a command. This will slow down the communication, so
if you need a high data rate, switch off the error checking and call C843_GetError() (p.27) by yourself
when there is time to do so. You can use the permanent error check to debug your application. At startup
this mode is switched on.
Arguments:

iID ID of controller
bErrorCheck new state, TRUE to switch on error check, FALSE to switch it off.

Returns:
the old state before this call

BOOL C843_FUNC_DECL C843_SetQMC (long iID, BYTE bCmd, BYTE bAxis, int Param)

Sends a QMC command (command set of the motion processor) with one argument (16 and 32 bit) to the
C-843 controller.
Arguments:

iID ID of controller
bCmd the QMC command.
bAxis the axis (The first axis is axis 0).
Param the QMC argument.

Returns:
TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 53

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_SetQMCA (long iID, BYTE bCmd, BYTE bAxis, WORD Param1, int
lParam2)

Sends a QMC command (command set of the motion processor) with two arguments (2 * 32-bit data
words) to the C-843 controller.
Arguments:

iID ID of controller
bCmd the QMC command.
bAxis the axis (The first axis is axis 0).
Param1 the first data word.
Param2 the second data word.

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_SMO (long iID, const char* szAxes, const long* pnValarray)

 Corresponding GCS command: SMO

Set control value for the motor output directly to move the axis. Note that this is basically a velocity setting,
not a position setting. Trajectory generator and servo filter are omitted.
Servo must be switched off (open-loop operation; see C843_SVO() (p.57)) when using this function.
CAUTION: Limit switches are deactivated so that the stage can run into the hard stop. This can cause
damage to equipment.
Arguments:

iID ID of controller
szAxes string with axes
pnValarray array with motor output parameters. All must be in [-32767 to 32767]

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_SPA (long iID, const char* szAxes, const long* iCmdarray, const double*
dValarray, const char* szStageNames)

 Corresponding GCS command: SPA
Set parameters for szAxes. For each parameter you must specify an axis in szAxes and a parameter ID
in the corresponding element of iCmdarray. The most important parameter IDs are listed below. For a
complete list, see ”Parameter List” p. 62.

• 0x1 for P-Term
• 0x2 for I-Term
• 0x3 for D-Term
• 0x4 for I-Limit (integration limit)
• 0x5 for VFF (velocity feed forward)
• 0x10 maximum velocity
• 0x11 acceleration
• 0x6 for Kout (output scale factor)
• 0x7 for Bias (motor bias)
• 0x8 for the maximum position error

Whenever you start working, first C843_CST() and C843_INI() must be called: C843_CST() loads stage
parameters suitable for your hardware from a stage database, and C843_INI() writes the loaded values to
the controller to initialize the motion control chip on the C-843 board. Afterwards, you can change
parameters using C843_SPA(). Note that some parameters should normally not be changed (see marks
in the parameter list).
Note that all parameter changes with C843_SPA() are temporarily (done in C843_GCS_DLL and in the
motion processor of the C-843 board). To store parameter values, save them to the

Release 4.0.0 www.pi.ws Page 54

C-843 GCS DLL Software Manual MS112E

C843UserStages2.dat stage database (see “Functions for User-Defined Stages” on p. 17 for more
information).

CAUTION: Wrong values of the parameters may lead to improper operation or damage of your hardware.
Be careful when changing parameters.
With C843-qHPA() you can obtain a list of the available parameters and their IDs.

Note:
 If the same axis has the same parameter ID more than once, only the last value will be used. For
example C843_SPA(id, "111", {0x1, 0x1,0x2}, {100, 200, 150}) will set the P-term of
'0x1' to 200 and the I-term to 150. Some stages have additional parameters which can be set with
SPA. For Userdefined stages see (p. 17).

Arguments:
iID ID of controller
szAxes axes for which the corresponding parameter should be set
iCmdarray IDs of parameters
dValarray array with the values for the parameters
szStageNames string when needed, set to NULL if numeric values are used

Returns:
TRUE if successful, FALSE otherwise

Errors:
 PI_INVALID_SPA_CMD_ID one of the IDs in iCmdarray is not valid.

BOOL C843_FUNC_DECL C843_SRA (long iID, const char* szAxes, double* pdValarray)

 Corresponding command: SRA
Gear ratio setting for electronic gearing: the given ratio is applied when electronic gearing is enabled for
the szAxes which are then the slaves. The ratio is defined as
Ratio = Travel of Master / Travel of Slave
See C843_EGE() for further details regarding electronic gearing.
Parameters:

iID ID of controller
szAxes string with axes
pdValarray array with ratios for the axes

Returns:
TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 55

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_STE (long iID, const char* cAxis, double* dOffset)

 Corresponding GCS command: STE
Starts performing a step and recording up to 32,640 position values as the axis response.
A "step" is a motion pos. a → pos. b, performed relative to the current position.
The recorded data can be read with C843_qSTE(), C843_qDRR() or C843_qDRR_sync().
C843_STE() automatically changes the record option of the first data recorder table to "actual position" (2)
(see also C843_DRC()). The configuration of record tables 2 to 4 is not changed by C843_STE(). This
makes it possible to record additional data, but these data can only be read with C843_qDRR() or
C843_qDRR_sync().
The number of points which are recorded with C843_STE() depends on the C843_DRC() settings: the
points available for recording are in equal shares allocated to the tables with non-zero record options (for
the total number of points to allocate ask C843_qSPA() with parameter 0x16000200, maximum value is
32,256).
C843_STE() automatically resets the data recorder sample period to 1 (see also C843_RTR() or
C843_SPA() parameter 0x16000000).
If you do not want to deal with the restrictions induced by C843_STE(), you can use C843_MVR() instead
to make a relative step move and configure recording according to your requirements.
Note that the data recorder shares the 32,256 points of volatile memory provided on the C-843 card
(referred to as “external RAM” in the MotionProcessor Users Guide) with the multi-axis motion profiles
which can be created by the User Profile Mode commands (C843_Upx() functions). It may be necessary
to free memory occupied by user-defined motion profiles using C843_UPC() to have enough memory for
data recording.
Note that with some older C-843 hardware models, you can not use the data recorder if the digital output
lines have been set with C843_DIO() before any data-recorder-related command was sent. To use the
data recorder, reconnect the C-843.
Motion commands like C843_STE() are not allowed when the joystick is active for the axis.
Arguments:

iID ID of controller
cAxis axis for which the step response will be recorded
dOffset position offset for cAxis

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_STP (long iID)

 Corresponding GCS command: STP
Stop all axes abruptly.
Arguments:

iID ID of controller
Returns:

TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 56

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_SVO (long iID, const char* szAxes, const BOOL * pbValarray)

 Corresponding GCS command: SVO
Set servo-control "on" or "off" (closed-loop / open-loop mode). If pbValarray[index] is FALSE the mode is
"off", if TRUE it is set to "on".
With servo OFF only direct motor output (velocity-related) is possible (see C843_SMO(), p. 54).
Stages with brake: The brake is activated automatically when the servo is switched off with C843_SVO(),
and deactivated when the servo is switched on.
CAUTION
Before setting servo-control off make sure that the stage can not perform unwanted motion in servo-off
mode. Unwanted motion could cause irreparable damage to the stage and the application setup.
Setting the brake with C843_BRA() does not affect the servo state of the axis. I.e. if you activate the
brake, the servo remains on so that the motor may work against the brake which can cause overheating.
In this case, it may be necessary to switch the servo off temporarily. Do not deactivate the brake when the
servo is switched off! Otherwise unwanted motion can occur.
Arguments:

iID ID of controller
szAxes string with axes
pbValarray modes for the specified axes, TRUE for "on", FALSE for "off"

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_TRO (long iID, const long* iTriggerLinesArray, const BOOL* pbValarray,
long iArraySize)

 Corresponding command: TRO
Enables or disables the TRrigger Output mode which was set with C843_CTO() for the given digital output
line. If pbValarray[index] is FALSE the mode is "off", if TRUE it is set to "on".
Arguments:

iID ID of controller
iTriggerLinesArray is an array with the digital output lines located on the J8 (“All-axes”) connector on
the C-843 board (digital output from the motion processor, TTL, max. 5 mA).
with C-843.21: can be 1 and 2
with C-843.41: can be 1 to 4
The lines can be brought out of the PC housing using an adapter bracket with a sub-D 15m connector
(included with C-843).
pbValarray pointer to boolean array with modes for the specified trigger lines, TRUE for "on", FALSE
for "off"
iArraySize number of trigger lines

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_TranslateError (int errNr, char * szBuffer, const int maxlen)

Translate error number to error message.
Arguments:

errNr number of error, as returned from C843_GetError() (p.27).
szBuffer pointer to buffer that will store the message
maxlen size of the buffer

Returns:
TRUE if successful, FALSE, if the buffer was too small to store the message

Release 4.0.0 www.pi.ws Page 57

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_UPA (long iID, const char* szClusters, const long* iCmdarray)

 Corresponding GCS command: UPA
User Profile Mode: Activate block.
See separate Technical Note A000T0014_100_UserProfileModeSoftware and the C-843 GCS Command
manual (SM149E) for more information.
Note that with some older C-843 hardware models, you can not use the User Profile Mode if the digital
output lines have been set with C843_DIO() before any User-Profile-Mode-related command was sent. To
use the User Profile Mode, reconnect the C-843.
Arguments:

iID ID of controller
szClusters string with clusters
iCmdarray indices of blocks of corresponding clusters to be activated (swapped in)

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_UPB (long iID, const char* szClusters, const long* iCmdarray, , const long*
iPararray, const long* iValarray)

 Corresponding GCS command: UPB
User Profile Mode: Create or modify Block or delete all Blocks.
See separate Technical Note A000T0014_100_UserProfileModeSoftware and the C-843 GCS Command
manual (SM149E) for more information.
Note that with some older C-843 hardware models, you can not use the User Profile Mode if the digital
output lines have been set with C843_DIO() before any User-Profile-Mode-related command was sent. To
use the User Profile Mode, reconnect the C-843.
Arguments:

iID ID of controller
szClusters string with clusters
iCmdarray indices of blocks to be created or modified for corresponding clusters
iPararray parameter IDs of parameters of corresponding blocks to be set
iValarray values to be assigned to corresponding parameters

Note: If block index, parameter ID and value are all -1, all blocks of the corresponding Cluster are
deleted.

Returns:
TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_UPC (long iID, const char* szAxes, const char* szClusters, const long*
iCmdarray, const long* iPararray)

 Corresponding GCS command: UPC
User Profile Mode: Create Cluster or delete all Clusters and Blocks.
See separate Technical Note A000T0014_100_UserProfileModeSoftware and the C-843 GCS Command
manual (SM149E) for more information.
Note that with some older C-843 hardware models, you can not use the User Profile Mode if the digital
output lines have been set with C843_DIO() before any User-Profile-Mode-related command was sent. To
use the User Profile Mode, reconnect the C-843.
Arguments:

iID ID of controller
szAxes string with axes
szClusters string with clusters to be assigned to these axes
iCmdarray array with maximum numbers of datasets in corresponding clusters

Release 4.0.0 www.pi.ws Page 58

C-843 GCS DLL Software Manual MS112E

iPararray array with lengths of corresponding datasets

Note: If szAxes and szClusters are both “$” and the corresponding values are both -1, all Clusters and
all Blocks, if any, are deleted

Returns:

TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_UPD (long iID, const char* szClusters, const long* iCmdarray, const long*
iPararray, const double* dValarray)

 Corresponding GCS command: UPD
User Profile Mode: Write data to one dataset in Block of Cluster.
See separate Technical Note A000T0014_100_UserProfileModeSoftware and the C-843 GCS Command
manual (SM149E) for more information.
Note that with some older C-843 hardware models, you can not use the User Profile Mode if the digital
output lines have been set with C843_DIO() before any User-Profile-Mode-related command was sent. To
use the User Profile Mode, reconnect the C-843.
Arguments:

iID ID of controller
szClusters string of length 1 with cluster
iCmdarray array with index of block to be written to in first cell
iPararray array with number of data set in block in first cell
dValarray array with values for dataset to be written

Returns:

TRUE if successful, FALSE otherwise

BOOL C843_FUNC_DECL C843_UPR (long iID, const char* szAxes, const char* szClusters, const long*
iCmdarray)

 Corresponding GCS command: UPR
User Profile Mode: Start motion.
See separate Technical Note A000T0014_100_UserProfileModeSoftware and the C-843 GCS Command
manual (SM149E) for more information.
Note that with some older C-843 hardware models, you can not use the User Profile Mode if the digital
output lines have been set with C843_DIO() before any User-Profile-Mode-related command was sent. To
use the User Profile Mode, reconnect the C-843.
Arguments:

iID ID of controller
szAxes string with axes
szClusters string with clusters, each assigned to corresponding axis
iCmdarray offset of Dataset in Cluster to start with

Returns:

TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 59

C-843 GCS DLL Software Manual MS112E

BOOL C843_FUNC_DECL C843_VEL (long iID, const char* szAxes, const double * pdValarray)

 Corresponding GCS command: VEL
Set the velocities of szAxes.
The maximum value which can be set with C843_VEL() is given by the Maximum closed-loop velocity
parameter, ID 0xA (can be changed with C843_SPA()).
During vectorial moves started with C843_MVE(), velocities, accelerations and decelerations will be
calculated to ensure that all axes follow the path. The current settings for velocity, acceleration and
deceleration define the maximum possible values, and the slowest axis determines the resulting velocities.
Arguments:

iID ID of controller
szAxes string with axes
pdValarray velocities for the axes

Returns:
TRUE if successful, FALSE otherwise

Release 4.0.0 www.pi.ws Page 60

C-843 GCS DLL Software Manual MS112E

5. Motion Parameters

5.1. Parameter Handling
The C843_GCS_DLL supports a mechanism which mirrors the hardware basics of
the connected stage and the required closed-loop control settings in parameters. The
parameter values have to be adjusted properly before initial operation of a stage. For
that purpose, call C843_CST() and C843_INI() whenever you start working:
C843_CST() loads stage parameters suitable for your hardware from a stage
database, and C843_INI() writes the loaded values to the controller to initialize the
motion control chip on the C-843 board. This is done on a per-axis basis. Note that
PIMikroMove™ performs this procedure automatically upon stage selection. See
“Parameter Databases” (p. 71) for the available stage databases.

With C843_qHPA() you can obtain a list of all available parameters with information
about each (e.g. short descriptions). The current valid parameter values can be read
with C843_qSPA(). Using C843_qVST() you can list the names of stages selectable
by C843_CST() (i.e. the stages for which parameter sets are available in the stage
databases).

Using the "general" modification function C843_SPA(), parameters can be changed.
In addition to this general modification command, there are some commands which
change certain specific parameters (see table in “Parameter List” below). Note that all
that parameter changes are temporarily (done in C843_GCS_DLL and in the motion
processor of the C-843 board). To store parameter values, save them to the
C843UserStages2.dat stage database (see “Functions for User-Defined Stages” on
p. 17 for more information).

CAUTION
Wrong values of the parameters may lead to improper operation or damage of your
hardware. Be careful when changing parameters.

The interrelation of the hardware-dependent parameters 0x15, 0x16, 0x17, 0x2F and
0x30 is described in "Travel Range Adjustment” (p. 68).

Release 4.0.0 www.pi.ws Page 61

C-843 GCS DLL Software Manual MS112E

5.2. Parameter List
For additional information regarding most of the parameters listed below, see the
User's Guide and the Programmer's Reference for the PMD Navigator MC2140CP
Motion Processor which are on the C-843 CD.

Para-
meter ID
(hexa-
decimal /
decimal)

Data
Type

Parameter
Description

Changing
with
C843_SPA
not recom-
mended

Possible Values/Notes

0x1 / 1 FLOAT P-term for position
control

 0 to 32767
Gives the P-term of the proportional-
integral-derivative (PID) algorithm
applied by the servo filter. See
MotionProcessors User Guide for more
information.

0x2 / 2 FLOAT I-term for position
control

 0 to 32767
Gives the I-term of the proportional-
integral-derivative (PID) algorithm
applied by the servo filter. See
MotionProcessors User Guide for more
information.

0x3 / 3 FLOAT D-term for position
control

 0 to 32767
Gives the D-term of the proportional-
integral-derivative (PID) algorithm
applied by the servo filter. See
MotionProcessors User Guide for more
information.

0x4 / 4 FLOAT I-limit for position
control

 0 to 32767
Gives the integration limit for the
accumulated error processed by the
servo filter. See MotionProcessors User
Guide for more information.

0x5 / 5 FLOAT Velocity feed forward 0 to 32767
Gives the velocity feed forward term of
the servo filter. See MotionProcessors
User Guide for more information.

0x6 / 6 FLOAT Output scaling factor 0 to 65536
Gives an output scale factor which is
applied by the servo filter to produce the
final motor output. See
MotionProcessors User Guide for more
information.

0x7 / 7 FLOAT Output bias value 0 to 32767
Gives a bias value which is added by
the servo filter to produce the final motor
output. When an axis is subject to a net
external force in one direction (such as a
vertical axis pulled downward by
gravity), the servo filter can compensate
for it by adding a constant DC bias to
the filter output. See MotionProcessors
User Guide for more information.

Release 4.0.0 www.pi.ws Page 62

C-843 GCS DLL Software Manual MS112E

Para-
meter ID
(hexa-
decimal /
decimal)

Data
Type

Parameter
Description

Changing
with
C843_SPA
not recom-
mended

Possible Values/Notes

0x8 / 8 FLOAT Maximum position
error (user unit)

 0 to 32767
Used for stall detection. If the position
error (i.e. the absolute value of the
difference between current position and
commanded position) in closed-loop
operation exceeds the given maximum,
the C843_GCS DLL sets error code -
1024 (“Motion error”), the servo will be
switched off automatically for the axis
concerned, and motion of all axes is
stopped immediately.

0x9 /9 FLOAT Motor output limit X Gives a limiting value for the output of
the servo filter. The motor output limit
prevents the filter output from exceeding
a boundary magnitude in either
direction. If the filter produces a value
greater than the limit, the motor
command takes the limiting value. The
motor limit applies only in closed-loop
operation (servo on). It does not affect
the motor command value set with
C843_SMO() in open-loop operation.
See MotionProcessors User Guide for
more information.

0xA / 10 FLOAT Maximum closed-loop
velocity (user unit/s)

X > 0
Gives the maximum value for parameter
0x49.

0xB / 11 FLOAT Current closed-loop
acceleration (user
unit/s2)
also changed by
C843_ACC()

 Gives the current acceleration, limited
by parameter 0x4A

0xC / 12 FLOAT Current closed-loop
deceleration (user
unit/s2)
also changed by
C843_DEC()

 Gives the current deceleration, limited
by parameter 0x4B

0xD / 13 FLOAT Maximum allowed jerk
(user unit/s3)

X Gives the maximum allowed jerk. Limits
the slope of the acceleration. In S-curve
profile mode, reducing the jerk will
smoothen the motion.

0xE / 14 FLOAT Numerator of the
counts-per-physical-
unit factor

X

0xF / 15 FLOAT Denominator of the
counts-per-physical-
unit factor

X

1 to 2147483647 for each parameter.
The counts-per-physical-unit factor
determines the “user” unit for closed-
loop motion commands. When you
change this factor, all other parameters
whose unit is based on the “user” unit
are adapted automatically, e.g. closed-
loop velocity and parameters regarding
the travel range.
Note: To customize your physical unit
use C843_DFF() instead (see parameter
0x12).

Release 4.0.0 www.pi.ws Page 63

C-843 GCS DLL Software Manual MS112E

Para-
meter ID
(hexa-
decimal /
decimal)

Data
Type

Parameter
Description

Changing
with
C843_SPA
not recom-
mended

Possible Values/Notes

0x10 / 16 FLOAT Output mode X 0 = Analog
1 = PWM

0x11 / 17 FLOAT Invert direction X -1 = invert direction
1 = do not invert

0x12 / 18 FLOAT Scaling factor,
also changed by
C843_DFF()

 This factor can be used to change the
physical unit of the stage, e.g. a factor of
25.4 converts a physical unit of mm to
inches.
It is recommended to use C843_DFF()
to change this factor.

0x13 / 19 FLOAT Rotary stage X 1 = rotary stage
0 = no rotary stage

0x14 / 20 FLOAT Stage has a reference
switch

X 1 = stage has a reference switch
0 = stage has no reference switch

0x15 / 21 FLOAT MAX_TRAVEL_RANG
E_POS
The maximum travel in
positive direction (user
unit)

X "Soft limit", based on the home (zero)
position. If the soft limit is smaller than
the position value for the positive limit
switch (which is given by the sum of the
parameters 0x16 and 0x2F), the positive
limit switch can not be used for
referencing.
Can be negative.

0x16 / 22 FLOAT VALUE_AT_REF_PO
S
The position value at
the reference switch
position (user unit)

X The position value which is to be set
when the mechanics performs a
reference move to the reference switch.
Must be set even if no reference switch
is present in the mechanics because it is
used to to calculate the position values
to be set after reference moves to the
limit switches.

0x17 / 23 FLOAT DISTANCE_REF_TO_
N_LIM
The distance between
reference switch and
negative limit switch
(user unit)

X Represents the physical distance
between the reference switch and the
negative limit switch integrated in the
mechanics. Must be set even if no
reference switch is present in the
mechanics because the position is set to
the difference of VALUE_AT_REF_POS
and DISTANCE_REF_TO_N_LIM when
the mechanics performs a reference
move to the negative limit switch.

0x18 / 24 FLOAT Limit switch polarity X 0 = positive limit switch active high (pos-
HI), negative limit switch active high
(neg-HI)
1 = positive limit switch active low (pos-
LO), neg-HI
2 = pos-HI, neg-LO
3 = pos-LO, neg-LO

Release 4.0.0 www.pi.ws Page 64

C-843 GCS DLL Software Manual MS112E

Para-
meter ID
(hexa-
decimal /
decimal)

Data
Type

Parameter
Description

Changing
with
C843_SPA
not recom-
mended

Possible Values/Notes

0x19 / 25 FLOAT Stage type X 0 = DC motor
2 = Voice coil

0x1A / 26 FLOAT Stage has brakes X 0 = Stage has no brakes
1 = Stage has brakes

0x1B / 27 FLOAT Current profile mode X 0 = Trapezoidal point-to-point
1 = Velocity contouring (use only with
rotary stages)
2 = S-curve point-to-point
4 = User profile mode (read only)
Note that S-curve profile mode does not
support changes to any of the profile
parameters while the axis is in motion.
See MotionProcessors User Guide for
more information.

0x2F / 47 FLOAT DISTANCE_REF_TO_
P_LIM
The distance between
reference switch and
positive limit switch
(user unit)

X Represents the physical distance
between the reference switch and the
positive limit switch integrated in the
mechanics. Must be set even if no
reference switch is present in the
mechanics because the position is set to
the sum of VALUE_AT_REF_POS and
DISTANCE_REF_TO_P_LIM when the
mechanics performs a reference move
to the positive limit switch.

0x30 / 48 FLOAT MAX_TRAVEL_RANG
E_NEG
The maximum travel in
negative direction
(user unit)

X "Soft limit", based on the home (zero)
position. If the soft limit is larger than the
position value for the negative limit
switch (which is given by the difference
of the parameters 0x16 and 0x17), the
negative limit switch can not be used for
referencing.
Can be negative.

0x31 / 49 FLOAT Invert reference switch
signal

X 1 = invert reference switch signal
0 = do not invert

0x32 / 50 FLOAT Stage has limit
switches;
enables / disables the
stopping of the motion
at the limit switches

X 0 = Stage has limit switches
1 = Stage has no limit switches

0x36 / 54 FLOAT Settle window (counts) 0 to 231
The settle window is centered around
the target position. The on-target status
becomes "true" when the current
position stays in this window for at least
the settle time (parameters 0x3F / 0x38).

Release 4.0.0 www.pi.ws Page 65

C-843 GCS DLL Software Manual MS112E

Para-
meter ID
(hexa-
decimal /
decimal)

Data
Type

Parameter
Description

Changing
with
C843_SPA
not recom-
mended

Possible Values/Notes

0x38 / 56 FLOAT Settle time (cycles) 0 to 32767
Used for on-target detection: The on-
target status becomes "true" when the
current position stays in the settle
window (parameter 0x36) for at least the
settle time. If the settle time is set to 0,
then the axis is on target when the
trajectory has finished, irrespective of
the current position.
Parameter 0x38 has the same value as
parameter 0x3F, but given in number of
cycles. If parameter 0x3F is changed,
parameter 0x38 is adapted automatically
and vice versa.

0x3C / 60 CHAR Stage name X Maximum 31 characters
Can be queried with CST?.
Note: To connect a stage, always use
CST. Do not set the stage name
parameter with C843_SPA(). Otherwise
the stage parameters will not be loaded
properly from the stage database.

0x3F / 63 FLOAT Settle time (s) The same value as parameter 0x38, but
given in seconds. If parameter 0x38 is
changed, parameter 0x3F is adapted
automatically and vice versa.

0x49 / 73 FLOAT Current closed-loop
velocity (user unit/s)
also changed by
C843_VEL()

 Gives the current velocity, limited by
parameter 0xA

0x4A / 74 FLOAT Maximum closed-loop
acceleration (user
unit/s2)

X Gives the maximum value for parameter
0xB

0x4B / 75 FLOAT Maximum closed-loop
deceleration (user
unit/s2)

X Gives the maximum value for parameter
0xC

0x50 / 80 FLOAT Velocity for reference
moves and find-edge
moves (user unit/s)

 Gives the maximum velocity to be used
for reference moves with
C843_REF(),C843_FRF(),C843_MPL(),
C843_FPL(),C843_MNL(),C843_FNL()
and for find-edge moves with
C843_FED().
If set to 0, reference moves or find-edge
moves are not possible.

0x59 / 89 FLOAT Acceleration feed
forward

 0 to 32767
Gives the acceleration feed forward term
of the servo filter. See MotionProcessors
User Guide for more information.

0x16000000
/ 369098752

INT Data Recorder Table
rate (cycles)
also changed by
C843_RTR()

 Gives the data recorder sampling period
(default value is one servo cycle). You
can cover longer periods by increasing
this value.

Release 4.0.0 www.pi.ws Page 66

C-843 GCS DLL Software Manual MS112E

Para-
meter ID
(hexa-
decimal /
decimal)

Data
Type

Parameter
Description

Changing
with
C843_SPA
not recom-
mended

Possible Values/Notes

0x16000200
/ 369099264

INT Data Recorder
Maximum record
points

X Gives the total number of points
available for data recording (max.
32,256). The points available are in
equal shares allocated to the tables with
non-zero DRC record options.
Note that the data recorder shares the
32,256 points of volatile memory
provided on the C-843 card (referred to
as “external RAM” in the
MotionProcessor Users Guide) with the
multi-axis motion profiles which can be
created by the User Profile Mode
commands (C843_Upx() functions).

5.3. Transmission Ratio and Scaling Factor
The physical unit used for the stages (i.e. for the axes of the controller) results from
the following interrelation of some stage parameters:

SF
CpuD
CpuNCntPU ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= /

()
CpuD
CpuNSFPUCnt ×= /

Name Number* Description

PU - Physical Unit

Cnt - Counts

CpuN 0xE Numerator of the counts per physical unit factor

CpuD 0xF Denominator of the counts per physical unit factor

SF 0x12 Scaling factor**

*Number is the parameter ID for C843_SPA() and C843_qSPA(), see also parameter list beginning on
p. 62.

**See C843_DFF()

The "Counts per physical unit factor" which results from parameter 0xE divided by
parameter 0xF includes the physical transmission ratio and the resolution of the
stage.

CAUTION
To customize the physical unit of a stage do not change parameter 0xE and
parameter 0xF but use C843_DFF() instead. Although C843_DFF() has the same
effect as changing parameter 0x12 with C843_SPA(), you should only use
C843_DFF() and not C843_SPA() to modify the scaling factor.

Example: If you set with C843_DFF() a value of 25.4 for an axis, the physical unit for
this axis is converted from mm to inches.

Release 4.0.0 www.pi.ws Page 67

C-843 GCS DLL Software Manual MS112E

5.4. Travel Range Adjustment
The figures below give a universal hardware scheme of a positioning stage with
incremental sensor, reference and limit switches. To work with such a stage, the
stage parameters must be adjusted properly (see "Parameter Handling” on p. 61 for
how to modify parameter values).

In the example shown in the first figure, the travel range, i.e. the distance from
negative to positive limit switch is 20 mm, the distance between the negative limit
switch and the reference switch is 8 mm, and the distance between reference switch
and positive limit switch is 12 mm. These hardware properties are represented by the
following parameters:

DISTANCE_REF_TO_N_LIM (parameter ID 0x17) = 8

DISTANCE_REF_TO_P_LIM (parameter ID 0x2F) = 12

To allow for flexible localization of the home position (0), a special parameter is
provided. It gives the offset between reference switch and home position which is to
be valid for the stage after a reference move (see below). In the example, the home
position is to be located at the negative limit switch after a reference move, and hence
the offset between reference switch and home position is 8 mm.

VALUE_AT_REF_POS (parameter ID 0x16) = 8

To allow for absolute moves, either an absolute "initial" position can be set with
C843_POS(), or the stage can perform a reference move to a known position where a
defined position value will be set as the current position (see also C843_RON()). By
default, a reference move is required. In the example, known positions for reference
moves are given by the reference switch and the limit switches. Depending on the
switch used for the reference move, a certain combination of the above-mentioned
parameters is used to calculate the position to be set at the end of the move:

 Reference switch (C843_REF() or C843_FRF()): the stage is moved to the
reference switch, and the value of VALUE_AT_REF_POS is set as the current
position.

 Negative limit switch (C843_MNL() or C843_FNL()): the stage is moved to the
negative limit switch and the difference of VALUE_AT_REF_POS and
DISTANCE_REF_TO_N_LIM is set as the current position (can be negative).

 Positive limit switch (C843_MPL() or C843_FPL()): the stage is moved to the
positive limit switch and the sum of VALUE_AT_REF_POS and
DISTANCE_REF_TO_P_LIM is set as the current position.

It is furthermore possible to set "soft limits" which establish a "safety distance" which
the stage will not enter on both ends of the travel range. Those soft limits always refer
to the current home position (0; in the example located at the negative limit switch
after a reference move). The soft limits are to be deactivated in the example so that
the corresponding parameters must be as follows:

MAX_TRAVEL_RANGE_POS (parameter ID 0x15) = 20 mm

MAX_TRAVEL_RANGE_NEG (parameter ID 0x30) = 0 mm

(This means that the stage can move 20 mm in positive direction, starting from the
home position, and 0 mm in negative direction, starting from the home position.)

Release 4.0.0 www.pi.ws Page 68

C-843 GCS DLL Software Manual MS112E

Figure 1: Positioning stage and corresponding controller parameters

Now in the same example, a "safety distance" is to be established on both ends of the
travel range by setting soft limits, and the home position is to be located at about 1/3
of the distance between the new negative end of the travel range and the reference
switch. The limit switches can not be used for reference moves anymore.

Release 4.0.0 www.pi.ws Page 69

C-843 GCS DLL Software Manual MS112E

Figure 2: Positioning stage, soft limits set in the controller to reduce the travel range

After the stage was referenced again by moving it to the reference switch (with
C843_REF() or C843_FRF()), the following responses will be given:

C843_qTMN() returns -2.1

C843_qTMX() returns 16.4

C843_qPOS() returns 5.4

CAUTION

If the soft limits (MAX_TRAVEL_RANGE_POS and MAX_TRAVEL_RANGE_NEG)
are used to reduce the travel range, the limit switches can not be used for reference
moves. C843_MNL(),C843_FNL(),C843_MPL() and C843_FPL() will provoke an error
message, and only the reference switch can be used for a reference move
(C843_REF() or C843_FRF()).

Be careful when setting the values for VALUE_AT_REF_POS,
MAX_TRAVEL_RANGE_POS and MAX_TRAVEL_RANGE_NEG because there is
no plausibility check.

The soft limits may not be outside of the physical travel range:
MAX_TRAVEL_RANGE_POS ≤ DISTANCE_REF_TO_P_LIM +
VALUE_AT_REF_POS
MAX_TRAVEL_RANGE_NEG ≥ VALUE_AT_REF_POS -
DISTANCE_REF_TO_N_LIM
Otherwise, reference moves to the limit switches would have incorrect results
because the values of the soft limits would be set at the end of the referencing
procedure.

Release 4.0.0 www.pi.ws Page 70

C-843 GCS DLL Software Manual MS112E

Be careful when referencing the stage by setting an initial absolute position with
C843_POS() since the values for MAX_TRAVEL_RANGE_POS and
MAX_TRAVEL_RANGE_NEG are not adapted. In the worst case, the soft limits will
now be outside of the physical travel range, and the stage will no longer be able to
move since the move commands check the soft limit settings.

5.5. Parameter Databases
The C843_GCS_DLL and the GCS-based host software from PI use multiple
databases for stage parameters:

 PIStages2.dat contains parameter sets for all standard stages from PI and is
automatically installed on the host PC with the setup. It cannot be edited; should
changes in the file become necessary, you must obtain a new version from PI
and install it on your host PC (see “Updating PIStages2.dat”, p. 72).

 C843UserStages2.dat allows you to create and save your own stages (see
“Functions for User-Defined Stages” on p. 17). This database is created the first
time you connect stages in the host software (i.e. the first time the C843_qVST()
or C843_CST() functions of the C843_GCS library are used which is the case, for
example, when VST? or CST are sent in PITerminal or the Select connected
stages startup step is performed in PIMikroMove™).

 M-xxx.dat files contain parameter sets for custom stages delivered by PI. Those
files are provided by CDs which come with the stages and have to be copied to
the host PC according to the accompanying instructions. M-xxx.dat files can not
be edited; should changes become necessary, you must obtain a new version
from PI.

The PIStages2.dat, C843UserStages2.dat and M-xxx.dat databases are located in
the ...\PI\GcsTranslator directory on the host PC. The location of the PI directory is
that specified upon installation, usually in C:\Documents and Settings\All
Users\Application Data (Windows XP) or C:\ProgramData (Windows Vista). If this
directory does not exist, the program that needs the stage databases will look in its
own directory. In PIMikroMove™, you can use the Version Info item in the controller
menu or the Search for controller software item in the Connections menu to identify
the GcsTranslator path.

Notes for users which have already installed older versions of C843_GCS_DLL,
PIMikroMove™ and PIStageEditor:

 The format of the stage parameter (DAT) files has changed (more parameters
provided), realized by a file version change from 1 to 2. Note that PIStages and
C843Userstages DAT files with version 2 contain a "2" in their file name, e.g.
PIStages2.dat (instead of PIStages.dat for version 1).

 Existing C843Userstages DAT files of version 1 are automatically converted to
version 2 files the first time you connect stages in the host software, i.e. the first
time the C843_qVST() or C843_CST() functions of the C843_GCS library are
used which is the case, for example, when VST? or CST are sent in PITerminal
or the Select connected stages startup step is performed in PIMikroMove™. The
Edit user stages data… item in the controller menu of PIMikroMove™ opens the
PIStageEditor tool with the version 2 file (C843UserStages2.dat). Parameters
which were not present in version 1 are set to default values during conversion.

 Version 4 and newer of the PIStageEditor supports stage parameter files of
version 2 (in PIMikroMove™, you can check the version of the PIStageEditor with
Help About PiStageEditor). If it is necessary to update the PIStageEditor, run
either the setup from the latest revision of the CD for your controller, or download

Release 4.0.0 www.pi.ws Page 71

C-843 GCS DLL Software Manual MS112E

the latest revision of the PIStageEditor from the PI website. It can be found there
in the same directory like the PIStages2.dat stage database. See “Updating
PIStages2.dat” below for download instructions and make sure to copy the
PiStageEditor.dll to the ...\PI\GcsTranslator directory.

5.6. Updating PIStages2.dat
To install the latest version of PIStages2.dat from the PI Website proceed as follows:

1. On the www.pi.ws front page, move the cursor to Manuals, Software, ISO
Statements in the Service section on the left.

2. Select Link to Software Server from the list that pops up.

3. On the PI Support Site page, click on the General Software category (no login
or password is required).

4. Click on PI Stages.

5. Click on pistages2.

6. In the download window, switch to the ...\PI\GcsTranslator directory. The
location of the PI directory is that specified upon installation, usually in
C:\Documents and Settings\All Users\Application Data (Windows XP) or
C:\ProgramData (Windows Vista) (may differ in other-language Windows
versions).

Note that in PIMikroMove™, you can use the Version Info entry in the
controller menu or the Search for controller software entry in the Connections
menu to identify the GcsTranslator path.

7. If desired, rename the existing PIStages2.dat (if present) so as to preserve a
copy for safety reasons.

8. Download the file from the server as PIStages2.dat.

Release 4.0.0 www.pi.ws Page 72

C-843 GCS DLL Software Manual MS112E

6. Error Codes
The error codes listed here are those of the PI General Command Set. As
such, some are not relevant to the C-843 and will simply never occur with the
systems this manual describes.
The error codes are defined in separate header files
"InterfaceErrors.h" and "PIControllerErrors.h" shipped with
the C843 GCS_DLL

Controller Errors

0 PI_CNTR_NO_ERROR No error

1 PI_CNTR_PARAM_SYNTAX Parameter syntax error

2 PI_CNTR_UNKNOWN_COMMAND Unknown command

3 PI_CNTR_COMMAND_TOO_LONG Command length out of limits or
command buffer overrun

4 PI_CNTR_SCAN_ERROR Error while scanning

5 PI_CNTR_MOVE_WITHOUT_REF_OR_NO_SERVO Unallowable move attempted on
unreferenced axis, or move
attempted with servo off

6 PI_CNTR_INVALID_SGA_PARAM Parameter for SGA not valid

7 PI_CNTR_POS_OUT_OF_LIMITS Position out of limits

8 PI_CNTR_VEL_OUT_OF_LIMITS Velocity out of limits

9 PI_CNTR_SET_PIVOT_NOT_POSSIBLE Attempt to set pivot point while
U,V and W not all 0

10 PI_CNTR_STOP Controller was stopped by
command

11 PI_CNTR_SST_OR_SCAN_RANGE Parameter for SST or for one of
the embedded scan algorithms
out of range

12 PI_CNTR_INVALID_SCAN_AXES Invalid axis combination for fast
scan

13 PI_CNTR_INVALID_NAV_PARAM Parameter for NAV out of range

14 PI_CNTR_INVALID_ANALOG_INPUT Invalid analog channel

15 PI_CNTR_INVALID_AXIS_IDENTIFIER Invalid axis identifier

16 PI_CNTR_INVALID_STAGE_NAME Unknown stage name

17 PI_CNTR_PARAM_OUT_OF_RANGE Parameter out of range

18 PI_CNTR_INVALID_MACRO_NAME Invalid macro name

Release 4.0.0 www.pi.ws Page 73

C-843 GCS DLL Software Manual MS112E

19 PI_CNTR_MACRO_RECORD Error while recording macro

20 PI_CNTR_MACRO_NOT_FOUND Macro not found

21 PI_CNTR_AXIS_HAS_NO_BRAKE Axis has no brake

22 PI_CNTR_DOUBLE_AXIS Axis identifier specified more
than once

23 PI_CNTR_ILLEGAL_AXIS Illegal axis

24 PI_CNTR_PARAM_NR Incorrect number of parameters

25 PI_CNTR_INVALID_REAL_NR Invalid floating point number

26 PI_CNTR_MISSING_PARAM Parameter missing

27 PI_CNTR_SOFT_LIMIT_OUT_OF_RANGE Soft limit out of range

28 PI_CNTR_NO_MANUAL_PAD No manual pad found

29 PI_CNTR_NO_JUMP No more step-response values

30 PI_CNTR_INVALID_JUMP No step-response values
recorded

31 PI_CNTR_AXIS_HAS_NO_REFERENCE Axis has no reference sensor

32 PI_CNTR_STAGE_HAS_NO_LIM_SWITCH Axis has no limit switch

33 PI_CNTR_NO_RELAY_CARD No relay card installed

34 PI_CNTR_CMD_NOT_ALLOWED_FOR_STAGE Command not allowed for
selected stage(s)

35 PI_CNTR_NO_DIGITAL_INPUT No digital input installed

36 PI_CNTR_NO_DIGITAL_OUTPUT No digital output configured

37 PI_CNTR_NO_MCM No more MCM responses

38 PI_CNTR_INVALID_MCM No MCM values recorded

39 PI_CNTR_INVALID_CNTR_NUMBER Controller number invalid

40 PI_CNTR_NO_JOYSTICK_CONNECTED No joystick configured

41 PI_CNTR_INVALID_EGE_AXIS Invalid axis for electronic
gearing, axis can not be slave

Release 4.0.0 www.pi.ws Page 74

C-843 GCS DLL Software Manual MS112E

42 PI_CNTR_SLAVE_POSITION_OUT_OF_RANGE Position of slave axis is out of
range

43 PI_CNTR_COMMAND_EGE_SLAVE Slave axis cannot be
commanded directly when
electronic gearing is enabled

44 PI_CNTR_JOYSTICK_CALIBRATION_FAILED Calibration of joystick failed

45 PI_CNTR_REFERENCING_FAILED Referencing failed

46 PI_CNTR_OPM_MISSING OPM (Optical Power Meter)
missing

47 PI_CNTR_OPM_NOT_INITIALIZED OPM (Optical Power Meter) not
initialized or cannot be initialized

48 PI_CNTR_OPM_COM_ERROR OPM (Optical Power Meter)
Communication Error

49 PI_CNTR_MOVE_TO_LIMIT_SWITCH_FAILED Move to limit switch failed

50 PI_CNTR_REF_WITH_REF_DISABLED Attempt to reference axis with
referencing disabled

51 PI_CNTR_AXIS_UNDER_JOYSTICK_CONTROL Selected axis is controlled by
joystick

52 PI_CNTR_COMMUNICATION_ERROR Controller detected
communication error

53 PI_CNTR_DYNAMIC_MOVE_IN_PROCESS MOV! motion still in progress

54 PI_CNTR_UNKNOWN_PARAMETER Unknown parameter

55 PI_CNTR_NO_REP_RECORDED No commands were recorded
with REP

56 PI_CNTR_INVALID_PASSWORD Password invalid

57 PI_CNTR_INVALID_RECORDER_CHAN Data Record Table does not
exist

58 PI_CNTR_INVALID_RECORDER_SRC_OPT Source does not exist; number
too low or too high

59 PI_CNTR_INVALID_RECORDER_SRC_CHAN Source Record Table number
too low or too high

60 PI_CNTR_PARAM_PROTECTION Protected Param: current
Command Level (CCL) too low

61 PI_CNTR_AUTOZERO_RUNNING Command execution not
possible while Autozero is
running

62 PI_CNTR_NO_LINEAR_AXIS Autozero requires at least one
linear axis

Release 4.0.0 www.pi.ws Page 75

C-843 GCS DLL Software Manual MS112E

63 PI_CNTR_INIT_RUNNING Initialization still in progress

64 PI_CNTR_READ_ONLY_PARAMETER Parameter is read-only

65 PI_CNTR_PAM_NOT_FOUND Parameter not found in non-
volatile memory

66 PI_CNTR_VOL_OUT_OF_LIMITS Voltage out of limits

67 PI_CNTR_WAVE_TOO_LARGE Not enough memory available
for requested wave curve

68 PI_CNTR_NOT_ENOUGH_DDL_MEMORY Not enough memory available
for DDL table; DDL can not be
started

69 PI_CNTR_DDL_TIME_DELAY_TOO_LARGE Time delay larger than DDL
table; DDL can not be started

70 PI_CNTR_DIFFERENT_ARRAY_LENGTH The requested arrays have
different lengths; query them
separately

71 PI_CNTR_GEN_SINGLE_MODE_RESTART Attempt to restart the generator
while it is running in single step
mode

72 PI_CNTR_ANALOG_TARGET_ACTIVE Motion commands and wave
generator activation are not
allowed when analog target is
active

73 PI_CNTR_WAVE_GENERATOR_ACTIVE Motion commands are not
allowed when wave generator is
active

74 PI_CNTR_AUTOZERO_DISABLED No sensor channel or no piezo
channel connected to selected
axis (sensor and piezo matrix)

75 PI_CNTR_NO_WAVE_SELECTED Generator started (WGO)
without having selected a wave
table (WSL).

76 PI_CNTR_IF_BUFFER_OVERRUN Interface buffer did overrun and
command couldn't be received
correctly

77 PI_CNTR_NOT_ENOUGH_RECORDED_DATA Data Record Table does not
hold enough recorded data

78 PI_CNTR_TABLE_DEACTIVATED Data Record Table is not
configured for recording

79 PI_CNTR_OPENLOOP_VALUE_SET_WHEN_SERVO_ON Open-loop commands (SVA,
SVR) are not allowed when
servo is on

80 PI_CNTR_RAM_ERROR Hardware error affecting RAM

Release 4.0.0 www.pi.ws Page 76

C-843 GCS DLL Software Manual MS112E

81 PI_CNTR_MACRO_UNKNOWN_COMMAND Not macro command

82 PI_CNTR_MACRO_PC_ERROR Macro counter out of range

83 PI_CNTR_JOYSTICK_ACTIVE Joystick is active

84 PI_CNTR_MOTOR_IS_OFF Motor is off

85 PI_CNTR_ONLY_IN_MACRO Macro-only command

86 PI_CNTR_JOYSTICK_UNKNOWN_AXIS Invalid joystick axis

87 PI_CNTR_JOYSTICK_UNKNOWN_ID Joystick unknown

88 PI_CNTR_REF_MODE_IS_ON Move without referenced stage

89 PI_CNTR_NOT_ALLOWED_IN_CURRENT_MOTION_MODE Command not allowed in current
motion mode

90 PI_CNTR_DIO_AND_TRACING_NOT_POSSIBLE No tracing possible while digital
IOs are used on this HW
revision. Reconnect to switch
operation mode.

91 PI_CNTR_COLLISION Move not possible, would cause
collision

100 PI_LABVIEW_ERROR PI LabVIEW driver reports error.
See source control for details.

200 PI_CNTR_NO_AXIS No stage connected to axis

201 PI_CNTR_NO_AXIS_PARAM_FILE File with axis parameters not
found

202 PI_CNTR_INVALID_AXIS_PARAM_FILE Invalid axis parameter file

203 PI_CNTR_NO_AXIS_PARAM_BACKUP Backup file with axis parameters
not found

204 PI_CNTR_RESERVED_204 PI internal error code 204

205 PI_CNTR_SMO_WITH_SERVO_ON SMO with servo on

206 PI_CNTR_UUDECODE_INCOMPLETE_HEADER uudecode: incomplete header

207 PI_CNTR_UUDECODE_NOTHING_TO_DECODE uudecode: nothing to decode

208 PI_CNTR_UUDECODE_ILLEGAL_FORMAT uudecode: illegal UUE format

209 PI_CNTR_CRC32_ERROR CRC32 error

Release 4.0.0 www.pi.ws Page 77

C-843 GCS DLL Software Manual MS112E

210 PI_CNTR_ILLEGAL_FILENAME Illegal file name (must be 8-0
format)

211 PI_CNTR_FILE_NOT_FOUND File not found on controller

212 PI_CNTR_FILE_WRITE_ERROR Error writing file on controller

213 PI_CNTR_DTR_HINDERS_VELOCITY_CHANGE VEL command not allowed in
DTR Command Mode

214 PI_CNTR_POSITION_UNKNOWN Position calculations failed

215 PI_CNTR_CONN_POSSIBLY_BROKEN The connection between
controller and stage may be
broken

216 PI_CNTR_ON_LIMIT_SWITCH The connected stage has driven
into a limit switch, some
controllers need CLR to resume
operation

217 PI_CNTR_UNEXPECTED_STRUT_STOP Strut test command failed
because of an unexpected strut
stop

218 PI_CNTR_POSITION_BASED_ON_ESTIMATION While MOV! is running position
can only be estimated!

219 PI_CNTR_POSITION_BASED_ON_INTERPOLATION Position was calculated during
MOV motion

230 PI_CNTR_INVALID_HANDLE Invalid handle

231 PI_CNTR_NO_BIOS_FOUND No bios found

232 PI_CNTR_SAVE_SYS_CFG_FAILED Save system configuration failed

233 PI_CNTR_LOAD_SYS_CFG_FAILED Load system configuration failed

301 PI_CNTR_SEND_BUFFER_OVERFLOW Send buffer overflow

302 PI_CNTR_VOLTAGE_OUT_OF_LIMITS Voltage out of limits

303 PI_CNTR_OPEN_LOOP_MOTION_SET_WHEN_SERVO_ON Open-loop motion attempted
when servo ON

304 PI_CNTR_RECEIVING_BUFFER_OVERFLOW Received command is too long

305 PI_CNTR_EEPROM_ERROR Error while reading/writing
EEPROM

306 PI_CNTR_I2C_ERROR Error on I2C bus

307 PI_CNTR_RECEIVING_TIMEOUT Timeout while receiving
command

Release 4.0.0 www.pi.ws Page 78

C-843 GCS DLL Software Manual MS112E

308 PI_CNTR_TIMEOUT A lengthy operation has not
finished in the expected time

309 PI_CNTR_MACRO_OUT_OF_SPACE Insufficient space to store macro

310 PI_CNTR_EUI_OLDVERSION_CFGDATA Configuration data has old
version number

311 PI_CNTR_EUI_INVALID_CFGDATA Invalid configuration data

333 PI_CNTR_HARDWARE_ERROR Internal hardware error

400 PI_CNTR_WAV_INDEX_ERROR Wave generator index error

401 PI_CNTR_WAV_NOT_DEFINED Wave table not defined

402 PI_CNTR_WAV_TYPE_NOT_SUPPORTED Wave type not supported

403 PI_CNTR_WAV_LENGTH_EXCEEDS_LIMIT Wave length exceeds limit

404 PI_CNTR_WAV_PARAMETER_NR Wave parameter number error

405 PI_CNTR_WAV_PARAMETER_OUT_OF_LIMIT Wave parameter out of range

406 PI_CNTR_WGO_BIT_NOT_SUPPORTED WGO command bit not
supported

502 PI_CNTR_REDUNDANCY_LIMIT_EXCEEDED Position consistency check
failed

503 PI_CNTR_COLLISION_SWITCH_ACTIVATED Hardware collision sensor(s) are
activated

504 PI_CNTR_FOLLOWING_ERROR Strut following error occurred,
e.g. caused by overload or
encoder failure

555 PI_CNTR_UNKNOWN_ERROR BasMac: unknown controller
error

601 PI_CNTR_NOT_ENOUGH_MEMORY not enough memory

602 PI_CNTR_HW_VOLTAGE_ERROR hardware voltage error

603 PI_CNTR_HW_TEMPERATURE_ERROR hardware temperature out of
range

1000 PI_CNTR_TOO_MANY_NESTED_MACROS Too many nested macros

1001 PI_CNTR_MACRO_ALREADY_DEFINED Macro already defined

1002 PI_CNTR_NO_MACRO_RECORDING Macro recording not activated

Release 4.0.0 www.pi.ws Page 79

C-843 GCS DLL Software Manual MS112E

1003 PI_CNTR_INVALID_MAC_PARAM Invalid parameter for MAC

1004 PI_CNTR_RESERVED_1004 PI internal error code 1004

1005 PI_CNTR_CONTROLLER_BUSY Controller is busy with some
lengthy operation (e.g. reference
move, fast scan algorithm)

2000 PI_CNTR_ALREADY_HAS_SERIAL_NUMBER Controller already has a serial
number

4000 PI_CNTR_SECTOR_ERASE_FAILED Sector erase failed

4001 PI_CNTR_FLASH_PROGRAM_FAILED Flash program failed

4002 PI_CNTR_FLASH_READ_FAILED Flash read failed

4003 PI_CNTR_HW_MATCHCODE_ERROR HW match code missing/invalid

4004 PI_CNTR_FW_MATCHCODE_ERROR FW match code missing/invalid

4005 PI_CNTR_HW_VERSION_ERROR HW version missing/invalid

4006 PI_CNTR_FW_VERSION_ERROR FW version missing/invalid

4007 PI_CNTR_FW_UPDATE_ERROR FW update failed

5200 PI_CNTR_AXIS_NOT_CONFIGURED Axis must be configured for this
action

Interface Errors

0 COM_NO_ERROR No error occurred during
function call

-1 COM_ERROR Error during com operation
(could not be specified)

-2 SEND_ERROR Error while sending data

-3 REC_ERROR Error while receiving data

-4 NOT_CONNECTED_ERROR Not connected (no port with
given ID open)

-5 COM_BUFFER_OVERFLOW Buffer overflow

-6 CONNECTION_FAILED Error while opening port

Release 4.0.0 www.pi.ws Page 80

C-843 GCS DLL Software Manual MS112E

-7 COM_TIMEOUT Timeout error

-8 COM_MULTILINE_RESPONSE There are more lines waiting in
buffer

-9 COM_INVALID_ID There is no interface or DLL
handle with the given ID

-10 COM_NOTIFY_EVENT_ERROR Event/message for notification
could not be opened

-11 COM_NOT_IMPLEMENTED Function not supported by this
interface type

-12 COM_ECHO_ERROR Error while sending "echoed"
data

-13 COM_GPIB_EDVR IEEE488: System error

-14 COM_GPIB_ECIC IEEE488: Function requires
GPIB board to be CIC

-15 COM_GPIB_ENOL IEEE488: Write function
detected no listeners

-16 COM_GPIB_EADR IEEE488: Interface board not
addressed correctly

-17 COM_GPIB_EARG IEEE488: Invalid argument to
function call

-18 COM_GPIB_ESAC IEEE488: Function requires
GPIB board to be SAC

-19 COM_GPIB_EABO IEEE488: I/O operation aborted

-20 COM_GPIB_ENEB IEEE488: Interface board not
found

-21 COM_GPIB_EDMA IEEE488: Error performing DMA

-22 COM_GPIB_EOIP IEEE488: I/O operation started
before previous operation
completed

-23 COM_GPIB_ECAP IEEE488: No capability for
intended operation

-24 COM_GPIB_EFSO IEEE488: File system operation
error

-25 COM_GPIB_EBUS IEEE488: Command error
during device call

-26 COM_GPIB_ESTB IEEE488: Serial poll-status byte
lost

-27 COM_GPIB_ESRQ IEEE488: SRQ remains
asserted

Release 4.0.0 www.pi.ws Page 81

C-843 GCS DLL Software Manual MS112E

-28 COM_GPIB_ETAB IEEE488: Return buffer full

-29 COM_GPIB_ELCK IEEE488: Address or board
locked

-30 COM_RS_INVALID_DATA_BITS RS-232: 5 data bits with 2 stop
bits is an invalid combination, as
is 6, 7, or 8 data bits with 1.5
stop bits

-31 COM_ERROR_RS_SETTINGS RS-232: Error configuring the
COM port

-32 COM_INTERNAL_RESOURCES_ERROR Error dealing with internal
system resources (events,
threads, ...)

-33 COM_DLL_FUNC_ERROR A DLL or one of the required
functions could not be loaded

-34 COM_FTDIUSB_INVALID_HANDLE FTDIUSB: invalid handle

-35 COM_FTDIUSB_DEVICE_NOT_FOUND FTDIUSB: device not found

-36 COM_FTDIUSB_DEVICE_NOT_OPENED FTDIUSB: device not opened

-37 COM_FTDIUSB_IO_ERROR FTDIUSB: IO error

-38 COM_FTDIUSB_INSUFFICIENT_RESOURCES FTDIUSB: insufficient resources

-39 COM_FTDIUSB_INVALID_PARAMETER FTDIUSB: invalid parameter

-40 COM_FTDIUSB_INVALID_BAUD_RATE FTDIUSB: invalid baud rate

-41 COM_FTDIUSB_DEVICE_NOT_OPENED_FOR_ERASE FTDIUSB: device not opened for
erase

-42 COM_FTDIUSB_DEVICE_NOT_OPENED_FOR_WRITE FTDIUSB: device not opened for
write

-43 COM_FTDIUSB_FAILED_TO_WRITE_DEVICE FTDIUSB: failed to write device

-44 COM_FTDIUSB_EEPROM_READ_FAILED FTDIUSB: EEPROM read failed

-45 COM_FTDIUSB_EEPROM_WRITE_FAILED FTDIUSB: EEPROM write failed

-46 COM_FTDIUSB_EEPROM_ERASE_FAILED FTDIUSB: EEPROM erase
failed

-47 COM_FTDIUSB_EEPROM_NOT_PRESENT FTDIUSB: EEPROM not present

-48 COM_FTDIUSB_EEPROM_NOT_PROGRAMMED FTDIUSB: EEPROM not
programmed

Release 4.0.0 www.pi.ws Page 82

C-843 GCS DLL Software Manual MS112E

-49 COM_FTDIUSB_INVALID_ARGS FTDIUSB: invalid arguments

-50 COM_FTDIUSB_NOT_SUPPORTED FTDIUSB: not supported

-51 COM_FTDIUSB_OTHER_ERROR FTDIUSB: other error

-52 COM_PORT_ALREADY_OPEN Error while opening the COM
port: was already open

-53 COM_PORT_CHECKSUM_ERROR Checksum error in received data
from COM port

-54 COM_SOCKET_NOT_READY Socket not ready, you should
call the function again

-55 COM_SOCKET_PORT_IN_USE Port is used by another socket

-56 COM_SOCKET_NOT_CONNECTED Socket not connected (or not
valid)

-57 COM_SOCKET_TERMINATED Connection terminated (by peer)

-58 COM_SOCKET_NO_RESPONSE Can't connect to peer

-59 COM_SOCKET_INTERRUPTED Operation was interrupted by a
nonblocked signal

-60 COM_PCI_INVALID_ID No device with this ID is present

-61 COM_PCI_ACCESS_DENIED Driver could not be opened (on
Vista: run as administrator!)

DLL Errors

-1001 PI_UNKNOWN_AXIS_IDENTIFIER Unknown axis identifier

-1002 PI_NR_NAV_OUT_OF_RANGE Number for NAV out of range--
must be in [1,10000]

-1003 PI_INVALID_SGA Invalid value for SGA--must be
one of 1, 10, 100, 1000

-1004 PI_UNEXPECTED_RESPONSE Controller sent unexpected
response

-1005 PI_NO_MANUAL_PAD No manual control pad installed,
calls to SMA and related
commands are not allowed

-1006 PI_INVALID_MANUAL_PAD_KNOB Invalid number for manual
control pad knob

-1007 PI_INVALID_MANUAL_PAD_AXIS Axis not currently controlled by a
manual control pad

Release 4.0.0 www.pi.ws Page 83

C-843 GCS DLL Software Manual MS112E

-1008 PI_CONTROLLER_BUSY Controller is busy with some
lengthy operation (e.g. reference
move, fast scan algorithm)

-1009 PI_THREAD_ERROR Internal error--could not start
thread

-1010 PI_IN_MACRO_MODE Controller is (already) in macro
mode--command not valid in
macro mode

-1011 PI_NOT_IN_MACRO_MODE Controller not in macro mode--
command not valid unless
macro mode active

-1012 PI_MACRO_FILE_ERROR Could not open file to write or
read macro

-1013 PI_NO_MACRO_OR_EMPTY No macro with given name on
controller, or macro is empty

-1014 PI_MACRO_EDITOR_ERROR Internal error in macro editor

-1015 PI_INVALID_ARGUMENT One or more arguments given to
function is invalid (empty string,
index out of range, ...)

-1016 PI_AXIS_ALREADY_EXISTS Axis identifier is already in use
by a connected stage

-1017 PI_INVALID_AXIS_IDENTIFIER Invalid axis identifier

-1018 PI_COM_ARRAY_ERROR Could not access array data in
COM server

-1019 PI_COM_ARRAY_RANGE_ERROR Range of array does not fit the
number of parameters

-1020 PI_INVALID_SPA_CMD_ID Invalid parameter ID given to
SPA or SPA?

-1021 PI_NR_AVG_OUT_OF_RANGE Number for AVG out of range--
must be >0

-1022 PI_WAV_SAMPLES_OUT_OF_RANGE Incorrect number of samples
given to WAV

-1023 PI_WAV_FAILED Generation of wave failed

-1024 PI_MOTION_ERROR Motion error while axis in
motion, call CLR to resume
operation

-1025 PI_RUNNING_MACRO Controller is (already) running a
macro

-1026 PI_PZT_CONFIG_FAILED Configuration of PZT stage or
amplifier failed

-1027 PI_PZT_CONFIG_INVALID_PARAMS Current settings are not valid for
desired configuration

Release 4.0.0 www.pi.ws Page 84

C-843 GCS DLL Software Manual MS112E

-1028 PI_UNKNOWN_CHANNEL_IDENTIFIER Unknown channel identifier

-1029 PI_WAVE_PARAM_FILE_ERROR Error while reading/writing wave
generator parameter file

-1030 PI_UNKNOWN_WAVE_SET Could not find description of
wave form. Maybe WG.INI is
missing?

-1031 PI_WAVE_EDITOR_FUNC_NOT_LOADED The WGWaveEditor DLL
function was not found at startup

-1032 PI_USER_CANCELLED The user cancelled a dialog

-1033 PI_C844_ERROR Error from C-844 Controller

-1034 PI_DLL_NOT_LOADED DLL necessary to call function
not loaded, or function not found
in DLL

-1035 PI_PARAMETER_FILE_PROTECTED The open parameter file is
protected and cannot be edited

-1036 PI_NO_PARAMETER_FILE_OPENED There is no parameter file open

-1037 PI_STAGE_DOES_NOT_EXIST Selected stage does not exist

-1038 PI_PARAMETER_FILE_ALREADY_OPENED There is already a parameter file
open. Close it before opening a
new file

-1039 PI_PARAMETER_FILE_OPEN_ERROR Could not open parameter file

-1040 PI_INVALID_CONTROLLER_VERSION The version of the connected
controller is invalid

-1041 PI_PARAM_SET_ERROR Parameter could not be set with
SPA--parameter not defined for
this controller!

-1042 PI_NUMBER_OF_POSSIBLE_WAVES_EXCEEDED The maximum number of wave
definitions has been exceeded

-1043 PI_NUMBER_OF_POSSIBLE_GENERATORS_EXCEEDED The maximum number of wave
generators has been exceeded

-1044 PI_NO_WAVE_FOR_AXIS_DEFINED No wave defined for specified
axis

-1045 PI_CANT_STOP_OR_START_WAV Wave output to axis already
stopped/started

-1046 PI_REFERENCE_ERROR Not all axes could be referenced

-1047 PI_REQUIRED_WAVE_NOT_FOUND Could not find parameter set
required by frequency relation

Release 4.0.0 www.pi.ws Page 85

C-843 GCS DLL Software Manual MS112E

-1048 PI_INVALID_SPP_CMD_ID Command ID given to SPP or
SPP? is not valid

-1049 PI_STAGE_NAME_ISNT_UNIQUE A stage name given to CST is
not unique

-1050 PI_FILE_TRANSFER_BEGIN_MISSING A uuencoded file transferred did
not start with "begin" followed by
the proper filename

-1051 PI_FILE_TRANSFER_ERROR_TEMP_FILE Could not create/read file on
host PC

-1052 PI_FILE_TRANSFER_CRC_ERROR Checksum error when
transferring a file to/from the
controller

-1053 PI_COULDNT_FIND_PISTAGES_DAT The PiStages2.dat database
could not be found. This file is
required to connect a stage with
the CST command

-1054 PI_NO_WAVE_RUNNING No wave being output to
specified axis

-1055 PI_INVALID_PASSWORD Invalid password

-1056 PI_OPM_COM_ERROR Error during communication with
OPM (Optical Power Meter),
maybe no OPM connected

-1057 PI_WAVE_EDITOR_WRONG_PARAMNUM WaveEditor: Error during wave
creation, incorrect number of
parameters

-1058 PI_WAVE_EDITOR_FREQUENCY_OUT_OF_RANGE WaveEditor: Frequency out of
range

-1059 PI_WAVE_EDITOR_WRONG_IP_VALUE WaveEditor: Error during wave
creation, incorrect index for
integer parameter

-1060 PI_WAVE_EDITOR_WRONG_DP_VALUE WaveEditor: Error during wave
creation, incorrect index for
floating point parameter

-1061 PI_WAVE_EDITOR_WRONG_ITEM_VALUE WaveEditor: Error during wave
creation, could not calculate
value

-1062 PI_WAVE_EDITOR_MISSING_GRAPH_COMPONENT WaveEditor: Graph display
component not installed

-1063 PI_EXT_PROFILE_UNALLOWED_CMD User Profile Mode: Command is
not allowed, check for required
preparatory commands

-1064 PI_EXT_PROFILE_EXPECTING_MOTION_ERROR User Profile Mode: First target
position in User Profile is too far
from current position

Release 4.0.0 www.pi.ws Page 86

C-843 GCS DLL Software Manual MS112E

-1065 PI_EXT_PROFILE_ACTIVE Controller is (already) in User
Profile Mode

-1066 PI_EXT_PROFILE_INDEX_OUT_OF_RANGE User Profile Mode: Block or
Data Set index out of allowed
range

-1067 PI_PROFILE_GENERATOR_NO_PROFILE ProfileGenerator: No profile has
been created yet

-1068 PI_PROFILE_GENERATOR_OUT_OF_LIMITS ProfileGenerator: Generated
profile exceeds limits of one or
both axes

-1069 PI_PROFILE_GENERATOR_UNKNOWN_PARAMETER ProfileGenerator: Unknown
parameter ID in Set/Get
Parameter command

-1070 PI_PROFILE_GENERATOR_PAR_OUT_OF_RANGE ProfileGenerator: Parameter out
of allowed range

-1071 PI_EXT_PROFILE_OUT_OF_MEMORY User Profile Mode: Out of
memory

-1072 PI_EXT_PROFILE_WRONG_CLUSTER User Profile Mode: Cluster is not
assigned to this axis

-1073 PI_UNKNOWN_CLUSTER_IDENTIFIER Unknown cluster identifier

-1074 PI_INVALID_DEVICE_DRIVER_VERSION The installed device driver
doesn't match the required
version. Please see the
documentation to determine the
required device driver version.

-1075 PI_INVALID_LIBRARY_VERSION The library used doesn't match
the required version. Please see
the documentation to determine
the required library version.

-1076 PI_INTERFACE_LOCKED The interface is currently locked
by another function. Please try
again later.

-1077 PI_PARAM_DAT_FILE_INVALID_VERSION Version of parameter DAT file
does not match the required
version. Current files are
available at www.pi.ws.

-1078 PI_CANNOT_WRITE_TO_PARAM_DAT_FILE Cannot write to parameter DAT
file to store user defined stage
type.

-1079 PI_CANNOT_CREATE_PARAM_DAT_FILE Cannot create parameter DAT
file to store user defined stage
type.

-1080 PI_PARAM_DAT_FILE_INVALID_REVISION Parameter DAT file does not
have correct revision.

-1081 PI_USERSTAGES_DAT_FILE_INVALID_REVISION User stages DAT file does not
have correct revision.

Release 4.0.0 www.pi.ws Page 87

C-843 GCS DLL Software Manual MS112E

7. Index
#7 30
#9 32
*IDN? 42
ACC 18
ACC? 36
axis arguments 11
BOOL 11
boolean values 11
BRA 18
BRA? 36
c strings 11
C-843 QMC Commands 16
C843_ACC 18
C843_AddStage 18
C843_BRA 18
C843_CloseConnection 19
C843_CLR 19
C843_Connect 19
C843_CST 19
C843_CTO 20
C843_DEC 21
C843_DFF 21
C843_DFH 21
C843_DIO 22
C843_DRC 22
C843_DRT 23
C843_EGE 24
C843_FED 24
C843_FNL 25
C843_FPL 26
C843_FRF 26
C843_GcsCommandset 26
C843_GcsGetAnswer 27
C843_GcsGetAnswerSize 27
C843_GetAsyncBuffer 27
C843_GetAsyncBufferIndex 27
C843_GetError 27
C843_GetInputChannelNames 28
C843_GetOutputChannelNames 28
C843_GetQMC 28
C843_GetQMCA 29
C843_GetRefResult 29
C843_GOH 29
C843_HLT 29
C843_INI 30
C843_IsConnected 30
C843_IsControllerReady 30
C843_IsMoving 31
C843_IsReferenceOK 31
C843_IsReferencing 31
C843_IsUserProfileActive 32
C843_JAX 32
C843_JON 32

C843_ListPCI 33
C843_MAS 33
C843_MNL 33
C843_MOV 34, 49, 50, 58, 59
C843_MPL 34
C843_MVE 34
C843_MVR 35
C843_OpenPiStagesEditDialog 35
C843_OpenUserStagesEditDialog

35
C843_POS 36
C843_qACC 36
C843_qBRA 36
C843_qCST 37
C843_qCTO 37
C843_qDEC 37
C843_qDFF 38
C843_qDFH 38
C843_qDIO 38
C843_qDRC 38
C843_qDRR 39
C843_qDRR_SYNC 39
C843_qEGE 40
C843_qERR 40
C843_qFED 40
C843_qFES 41
C843_qFRF 41
C843_qHDR 41
C843_qHLP 41
C843_qIDN 42
C843_qJAX 42
C843_qJON 43
C843_qMAS 43
C843_qMOV 43
C843_qONT 44
C843_qPOS 44
C843_qREF 44
C843_qRTR 45
C843_qSAI 45
C843_qSAI_ALL 45
C843_qSMO 45
C843_qSPA 46
C843_qSRA 46
C843_qSRG 46
C843_qSTE 47
C843_qSVO 47
C843_qTIO 47
C843_qTMN 48
C843_qTMX 48
C843_qTNR 48
C843_qTRO 48
C843_qTVI 49
C843_qVEL 50

Release 4.0.0 www.pi.ws Page 88

C-843 GCS DLL Software Manual MS112E

C843_qVER 50
C843_qVST 51
C843_REF 51
C843_RemoveStage 51
C843_RON 52
C843_RTR 52
C843_SAI 53
C843_SetErrorCheck 53
C843_SetQMC 53
C843_SetQMCA 54
C843_SMO 54
C843_SPA 54
C843_SRA 55
C843_STE 56
C843_STP 56
C843_SVO 57
C843_TranslateError 57
C843_TRO 57
C843_VEL 60
C8430_qLIM 43
C8843_qRON 44
CLR 19
Communication Initialization 12
CST 19
CST? 37
CTO 20
CTO? 37
DEC 21
DEC? 37
DFF 21
DFF? 38
DFH 21
DFH? 38
DIO 22
DIO? 38
DLL handling 9
DRC 22
DRC? 38
DRR? 39
DRT 23
DRT? 40
dynamic loading of a DLL 10
EGE 24
EGE? 40
ERR? 40
FALSE 11
FED 24
FED? 40
FES? 41
FNL 25
FPL 26
FRF 26
FRF? 41
GetProcAddress - Win32 API

function 10

GOH 29
HLP? 41
HLT 29
HPA? 42
INI 30
JAX 32
JAX? 42
JON 32
JON? 43
LIB - static import library 9
LIM? 43
linking a DLL 9
LoadLibrary - Win32 API function 10
MAS? 43
Mercury_qHPA 42
MNL 33
module definition file 9
MOV 33, 34, 49, 50, 58, 59
MOV? 43
MPL 34
MVE 34
MVR 35
NULL 11
ONT? 44
PC843_qDRT 40
POS 36
POS? 44
qSSL 46
REF 51
REF? 44
RON 52
RON? 44
RTR 52
RTR? 45
SAI 53
SAI? 45
SAI? ALL 45
SMO 54
SMO? 45
SPA 54
SPA? 46
SRA 55
SRA? 46
SRG? 46
static import library 9
STE 56
STE? 47
STP 56
SVO 57
SVO? 47
TIO? 47
TMN? 48
TMX? 48
TNR? 48
TRO 57

Release 4.0.0 www.pi.ws Page 89

C-843 GCS DLL Software Manual MS112E

TRO? 48
TRUE 11
TVI? 49
User-defind stages 16

VEL 60
VEL? 50
VER? 50
VST? 51

Release 4.0.0 www.pi.ws Page 90

	0. Manufacturer Declarations
	0.1. Scope of This Manual
	0.2. Disclaimer

	1. Introduction
	1.1. Conversion of Units
	1.2. Rounding Considerations
	1.3. Items to be Commanded
	1.4. Program Sequence

	2. General Information About PI DLLs
	2.1. Threads
	2.2. DLL Handling
	2.2.1. Using a Static Import Library
	2.2.2. Using a Module Definition File
	2.2.3. Using Windows API Functions

	2.3. Function Calls
	2.3.1. Item Identifiers
	2.3.2. Arguments for the Items

	2.4. Types Used in PI Software
	2.4.1. Boolean Values
	2.4.2. NULL Pointers
	2.4.3. C-Strings

	3. C-843 GCS DLL Function Groups
	3.1. Communication Functions
	3.2. Functions for Initialization of the C-843 GCS DLL
	3.3. Functions for GCS Commands
	3.4. Functions for Accessing QMC Commands
	3.5. Functions for User-Defined Stages

	4. C-843 GCS DLL Function Reference (alphabetical)
	5. Motion Parameters
	5.1. Parameter Handling
	5.2. Parameter List
	5.3. Transmission Ratio and Scaling Factor
	5.4. Travel Range Adjustment
	5.5. Parameter Databases
	5.6. Updating PIStages2.dat

	6. Error Codes
	7. Index

