

Präzisions-Lineartisch

Hohe Geschwindigkeit und Präzision durch magnetischen Direktantrieb

V-551

- Stellwege bis 230 mm
- Geschwindigkeit bis 0,5 m/s
- Absolutencoder mit 1 nm Auflösung
- Höchste Präzision mit PIOne Linearencoder: Kleinste Schrittweite 0,5 nm
- Hohe Führungsgenauigkeit
- Kompakte Bauform mit 160 mm Breite

Bitte beachten Sie, dass im Moment nur eine eingeschränkte Auswahl an Varianten dieser Produktfamilie zur Verfügung steht.

Wenn Sie weitere Informationen wünschen, kontaktieren Sie uns über info@pi.de.

Lineartisch der Referenzklasse

Durch die leichtgängigen Präzisions-Linearführungen mit Kreuzrollenlagern eignet sich der Lineartisch sehr gut für Scanning-Anwendungen mit konstanter Geschwindigkeit. Die Käfig-Zwangsführung verhindert zuverlässig das Käfigwandern. Die Führungen sind hochbelastbar und unter allen Betriebsbedingungen sehr präzise.

Linearmotoren

Linearmotoren sind elektromagnetische Direktantriebe. Sie verzichten auf mechanische Bauteile im Antriebsstrang und übertragen die Antriebskraft direkt und reibungsfrei auf die Bewegungsplattform. Die Antriebe erreichen hohe Geschwindigkeiten und Beschleunigungen. Eisenlose Motoren eignen sich besonders für Positionieraufgaben mit höchsten Ansprüchen an Präzision, da es keine unerwünschten Wechselwirkungen mit den Permanentmagneten gibt. Dies ermöglicht einen gleichmäßigen Lauf auch bei niedrigsten Geschwindigkeiten, gleichzeitig treten keine Vibrationen bei hohen Geschwindigkeiten auf. Nichtlinearitäten im Regelverhalten werden vermieden und jede beliebige Position kann einfach geregelt werden. Die Antriebskraft ist frei einstellbar.

Direkte Positionsmessung

Die Positionsmessung erfolgt mit höchster Genauigkeit direkt an der Bewegungsplattform, so dass Nichtlinearität, mechanisches Spiel oder elastische Deformation keinen Einfluss auf die Positionsmessung haben.

Der hochauflösende PIOne Encoder wurde von PI entwickelt und erlaubt bei entsprechender Messauswertung eine Positionsauflösung von weit unter einem Nanometer. Die optisch und kontaktlos arbeitenden PIOne Encoder basieren auf einem interferometrischen Messprinzip. Durch die kleine Signalperiode und die hohe Qualität der Signale erreichen PIOne Encoder eine Linearitätsabweichung von weniger als 1 %. PIOne Encoder unterstützen die Richtungserkennung bei der Auswertung eines Referenzsignals.

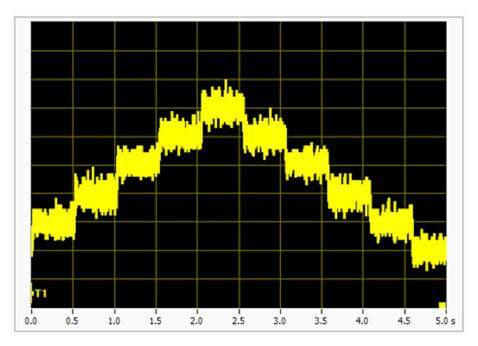
Absolutencoder liefern eindeutige Lageinformationen, die eine sofortige Feststellung der Position ermöglichen. Somit ist keine Referenzierung beim Einschalten erforderlich, Effizienz und Sicherheit im Betrieb können gesteigert werden.

Einsatzgebiete

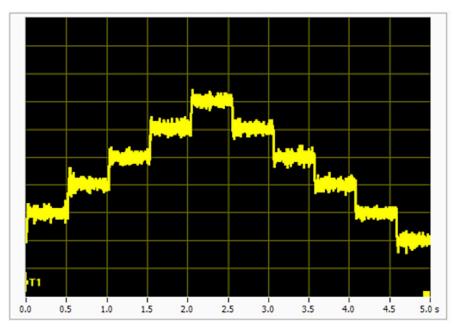
Industrie und Forschung. Automatisierung. Messtechnik. Photonik und Präzisionsscannen in der Halbleiter- oder der Flachbildschirm-Herstellung

Bewegen	Einheit	Toleranz	V-551.2B	V-551.4B	V-551.7B
Aktive Achsen			X	X	X
Stellweg in X	mm		60	130	230
Maximale Geschwindigkeit in X, unbelastet	mm/s		500	500	500
Geradheit (Lineares Übersprechen in Y bei Bewegung in X)	μm	typ.	±1	±1	±2
Ebenheit (Lineares Übersprechen in Z bei Bewegung in X)	μm	typ.	±2	±2	±2
Neigen (Rotatorisches Übersprechen in θY bei Bewegung in X)	µrad	typ.	±50	±100	±100
Gieren (Rotatorisches Übersprechen in θZ bei Bewegung in X)	µrad	typ.	±50	±50	±50

Positionieren	Einheit	Toleranz	V-551.2B	V-551.4B	V-551.7B
Kleinste Schrittweite in X	μm	typ.	0,002	0,002	0,002
Bidirektionale Wiederholge- nauigkeit in X	μm	typ.	0,05	0,05	0,05
Referenzschalter			_	_	_
Endschalter			Hall-Effekt, Schließer, 5 V, TTL	Hall-Effekt, Schließer, 5 V, TTL	Hall-Effekt, Schließer, 5 V, TTL
Integrierter Sensor			Absoluter Linearencoder	Absoluter Linearencoder	Absoluter Linearencoder
Sensorsignal			BiSS-C	BiSS-C	BiSS-C
Sensorsignalperiode	μm		_	_	_
Sensorauflösung	nm		1	1	1


Antriebseigenschaften	Einheit	Toleranz	V-551.2B	V-551.4B	V-551.7B
Antriebstyp			Eisenloser 3-Phasen-Linearmotor	Eisenloser 3-Phasen-Linearmotor	Eisenloser 3-Phasen-Linearmotor
Nennspannung	V		48	48	48
Spitzenspannung	V		48	48	48
Nennstrom, effektiv	А	typ.	1,5	1,5	1,5
Spitzenstrom, effektiv	А	typ.	10	10	10
Antriebskraft in X	N	typ.	27	27	27
Spitzenkraft in X	N		180	180	180
Kraftkonstante	N/A		18	18	18
Widerstand Phase-Phase	Ω	typ.	5,4	5,4	5,4
Induktivität Phase-Phase	mH		1,8	1,8	1,8
Gegen-EMK	V·s/m	max.	16	16	16
Polteilung N-N	mm		30	30	30

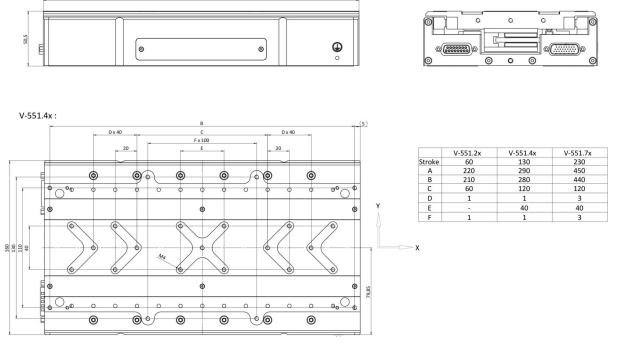
Mechanische Eigenschaften	Einheit	Toleranz	V-551.2B	V-551.4B	V-551.7B
Zulässige Druckkraft in Y	N	max.	50	50	50
Zulässige Druckkraft in Z	N	max.	150	150	150
Bewegte Masse in X, unbelastet	g		2200	2700	4900
Führung			Kreuzrollenführung	Kreuzrollenführung	Kreuzrollenführung
Gesamtmasse	g		4200	5500	9700
Material			Aluminium, schwarz eloxiert	Aluminium, schwarz eloxiert	Aluminium, schwarz eloxiert


Anschlüsse und Umgebung	Einheit	V-551.2B	V-551.4B	V-551.7B
Betriebstemperaturbereich	°C	5 bis 40	5 bis 40	5 bis 40
Anschluss		HD D-Sub 26 (m)	HD D-Sub 26 (m)	HD D-Sub 26 (m)
Sensoranschluss		D-Sub 15 (f)	D-Sub 15 (f)	D-Sub 15 (f)
Empfohlene Controller / Treiber		C-891, C-885 mit C-891.10C885, A-811.CE, G-901	C-891, C-885 mit C-891.10C885, A-811.CE, G-901	C-891, C-885 mit C-891.10C885, A-811.CE, G-901

Hinweis zu Sensorauflösung: interpoliert Hinweis zur kleinsten Schrittweite: Mit ACS NanoPWM Anschlusskabel sind nicht im Lieferumfang enthalten und müssen separat bestellt werden.



 $\label{thm:condensate} \mbox{Ein V-551.4D mit PIOne Linearencoder f\"{u}hrt eine Folge von 0,5-nm-Schritten aus.}$



 $\hbox{Ein V-551.4D mit PIOne Linear encoder f\"uhrt eine Folge von 1-nm-Schritten aus. } \\$

V-551, Ansicht von unten und Seitenansichten, Abmessungen in mm


V-551, Ansicht von oben und Seitenansichten, Abmessungen in mm

 $\label{thm:continuous} \mbox{Ein XY-Aufbau aus modifizierten V-551.4D Lineartischen und optionaler Schleppkette.}$

Ein XYZ-Aufbau aus drei V-551 Lineartischen mit jeweils 60 mm Stellweg. Die Z-Achse wurde modifiziert und verfügt über eine magnetische Kompensation der Gewichtskraft.

Bestellinformationen

V-551.2B

Präzisions-Lineartisch, 160 mm Breite, 60 mm Stellweg, 150 N Belastbarkeit, Absolutencoder, 1 nm Sensorauflösung, eisenloser 3-Phasen-Linearmotor

V-551.4B

Präzisions-Lineartisch, 160 mm Breite, 130 mm Stellweg, 150 N Belastbarkeit, Absolutencoder, 1 nm Sensorauflösung, eisenloser 3-Phasen-Linearmotor

V-551.7B

Präzisions-Lineartisch, 160 mm Breite, 230 mm Stellweg, 150 N Belastbarkeit, Absolutencoder, 1 nm Sensorauflösung, eisenloser 3-Phasen-Linearmotor