

Physik Instrumente (PI) SE & Co. KG, Auf der Römerstraße 1, 76228 Karlsruhe, Germany
Phone +49 721 4846-0, fax +49 721 4846-1019, e-mail info@pi.ws, www.pi.ws

MS249E
C-863.12 Mercury Controller
User Manual

Version: 2.1.0

Date: 2/13/22025

This document describes the following product:
 C-863.12

Mercury servo controller; 1 axis/channel; data
recorder, ID chip detection; closed-loop
controlled variables: position; 4 analog inputs;
4 digital inputs; 4 digital outputs

mailto:info@pi.ws
http://www.pi.ws/

The following trademarks are the intellectual property of Physik Instrumente (PI) SE & Co. KG ("PI") and have
been entered in the trademark register of the German Patent and Trade Mark Office and, in some cases, also
in other trademark registers under the company name of Physik Instrumente (PI) GmbH & Co. KG: PI®, PIC®,
PICMA®, PILine®, PIFOC®, PiezoWalk®, NEXACT®, NEXLINE®, PInano®, NanoCube®, Picoactuator®, PicoCube®,
PIMikroMove®, PIMag®, PIHera®

Notes on brand names and third-party trademarks:
Microsoft® and Windows® are registered trademarks or trademarks of Microsoft Corporation in the USA
and/or other countries.
EtherCAT® is a registered brand and patented technology licensed by Beckhoff Automation GmbH, Germany.
TwinCAT® is a registered and licensed brand of Beckhoff Automation GmbH.
LabVIEW, National Instruments and NI are trademarks of National Instruments. Neither the driver software
nor the software programs offered by PI or other goods and services are connected to or sponsored by
National Instruments.
Python® is a registered trademark of Python Software Foundation.
BiSS is a registered trademark of iC-Haus GmbH.

The following designations are protected company names, trademarks, or registered trademarks of third-
party owners:
Linux,MATLAB, MathWorks, FTDI
The use of these designations is purely for identification purposes.

The software products provided by PI are subject to the General Software License Terms of Physik
Instrumente (PI) SE & Co. KG and may contain and/or use third-party software components. Further
information can be found in the General Software License Terms
(https://www.physikinstrumente.com/fileadmin/user_upload/physik_instrumente/files/legal/General-
Software-License-Agreement-Physik-Instrumente.pdf) and in the Third-Party Software Notes
(https://www.physikinstrumente.com/fileadmin/user_upload/physik_instrumente/files/legal/Third-Party-
Software-Note-Physik-Instrumente.pdf) on our website.

© 2025 Physik Instrumente (PI) SE & Co. KG, Karlsruhe, Germany. The text, photographs, and drawings in this
manual are protected by copyright. Physik Instrumente (PI) SE & Co. KG reserves all rights in this respect. The
use of any text, images and drawings is permitted only in part and only when indicating the source.

Original instructions
First printing: 2/13/2025
Document number: MS249E, ASt, Version 2.1.0

Subject to change. This manual is superseded by any new release. The latest respective release is available for
download on our website (https://www.physikinstrumente.com/en/).

https://www.physikinstrumente.com/fileadmin/user_upload/physik_instrumente/files/legal/General-Software-License-Agreement-Physik-Instrumente.pdf
https://www.physikinstrumente.com/fileadmin/user_upload/physik_instrumente/files/legal/General-Software-License-Agreement-Physik-Instrumente.pdf
https://www.physikinstrumente.com/fileadmin/user_upload/physik_instrumente/files/legal/Third-Party-Software-Note-Physik-Instrumente.pdf
https://www.physikinstrumente.com/fileadmin/user_upload/physik_instrumente/files/legal/Third-Party-Software-Note-Physik-Instrumente.pdf
https://www.physikinstrumente.com/en/

1 About this Document 1

1.1 Objective and Target Group of this User Manual .. 1
1.2 Symbols and Typographic Conventions.. 1
1.3 Definition of Terms ... 2
1.4 Figures .. 3
1.5 Other Applicable Documents ... 3
1.6 Downloading manuals .. 4

2 Safety 5

2.1 Intended Use .. 5
2.2 General Safety Instructions .. 5
2.3 Organizational Measures .. 6

3 Product Description 7

3.1 Product View .. 7
3.1.1 Front Panel .. 7
3.1.2 Rear Panel .. 8

3.2 Type Plate ... 9
3.3 Scope of Delivery .. 9
3.4 Optional Accessories .. 10
3.5 Overview of PC Software .. 11

3.5.1 PI Software Suite ... 11

3.6 Positioner Databases .. 13
3.7 Communication Interfaces ... 14

3.7.1 Control of PI Systems ... 14
3.7.2 C-863.12 Communication Interfaces ... 15

3.8 Functional Principles .. 16
3.8.1 Block Diagram .. 16
3.8.2 Motor Control .. 16
3.8.3 Commandable Elements .. 17
3.8.4 Important Components of the Firmware .. 19
3.8.5 Operating Modes ... 20
3.8.6 Physical Units ... 20
3.8.7 Motion Triggering .. 21
3.8.8 Generation of the Dynamics Profile .. 22
3.8.9 Servo Algorithm and Other Control Value Corrections 26
3.8.10 On-Target State ... 29
3.8.11 Reference Switch Detection .. 30
3.8.12 Limit Switch Detection ... 30

Contents

3.8.13 Travel Range and Soft Limits ... 31
3.8.14 Referencing .. 34

4 Unpacking 39

5 Installing 41

5.1 Installing the PC Software .. 41
5.1.1 Doing Initial Installation ... 41
5.1.2 Installing Updates .. 42
5.1.3 Installing Custom Positioner Databases .. 43

5.2 Mounting the C-863.12 .. 44
5.3 Grounding the C-863.12 ... 45
5.4 Connecting the Positioner .. 45
5.5 Connecting the PC .. 46

5.5.1 Connecting to the RS-232 Interface .. 46
5.5.2 Connecting to the USB Interface ... 47
5.5.3 Building a Daisy Chain Network ... 47

5.6 Connecting the Power Adapter to the C-863.12 .. 48
5.7 Connecting an Analog Joystick ... 49
5.8 Connecting Digital Inputs and Outputs .. 50

5.8.1 Connecting the Digital Outputs ... 50
5.8.2 Connecting the Digital Inputs .. 50

5.9 Connecting Analog Signal Sources.. 51

6 Startup 53

6.1 General Notes on Startup ... 53
6.2 Adapting the DIP Switch Settings ... 53

6.2.1 General Procedure ... 53
6.2.2 Controller Address ... 54
6.2.3 Baud Rate... 55

6.3 Switching the C-863.12 On ... 55
6.4 Establishing Communication .. 56

6.4.1 Establishing Communication via RS-232 .. 57
6.4.2 Establishing Communication via USB .. 58
6.4.3 Establishing Communication for Networked Controllers 59

6.5 Starting Motion .. 64
6.6 Optimizing the Servo Control Parameters ... 68

7 Operation 75

7.1 Motion Errors ... 75
7.1.1 Behavior with Motion Errors ... 75
7.1.2 Re-establishing Readiness for Operation .. 76

7.2 Data Recorder ... 77
7.2.1 Configuring the Data Recorder .. 77
7.2.2 Starting the Recording ... 78
7.2.3 Reading Recorded Data ... 78

7.3 Digital Output Signals ... 79
7.3.1 Commands for Digital Outputs .. 79
7.3.2 Configuring the "Position Distance" Trigger Mode 80
7.3.3 Configuring the "On Target" Trigger Mode ... 82
7.3.4 Configuring the "Motion Error" Trigger Mode .. 82
7.3.5 Configuring the "In Motion" Trigger Mode ... 83
7.3.6 Configuring the "Position + Offset" Trigger Mode 83
7.3.7 Configuring the "Single Position" Trigger Mode .. 85
7.3.8 Setting Signal Polarity .. 85

7.4 Digital Input Signals .. 86
7.4.1 Commands and Parameters for Digital Inputs .. 86
7.4.2 Using Digital Input Signals in Macros .. 88
7.4.3 Using Digital Input Signals as Switch Signals ... 89

7.5 Analog Input Signals ... 90
7.5.1 Commands for Analog Inputs .. 90
7.5.2 Using Analog Input Signals in Macros .. 91

7.6 Joystick Control .. 92
7.6.1 How Joystick Control Works .. 92
7.6.2 Commands and Parameters for Joystick Control .. 92
7.6.3 Controlling Axis Motion ... 93
7.6.4 Calibrating the Joystick .. 95
7.6.5 Joysticks Available ... 97

7.7 Controller Macros ... 99
7.7.1 Overview: Macro Functionality and Example Macros 99
7.7.2 Commands and Parameters for Macros .. 100
7.7.3 Working with Macros .. 101
7.7.4 Making Backups and Loading Controller Macros 109
7.7.5 Macro Example: Synchronization of Two Controllers 110
7.7.6 Macro Example: Stopping Motion by Pushbutton 111
7.7.7 Macro Example: Joystick Control with Storage of Positions 112
7.7.8 Macro Example: Joystick Control with Change in Velocity 115

8 GCS Commands 117

8.1 Notation .. 117
8.2 GCS Syntax for Syntax Version 2.0 ... 117
8.3 Target and Sender Address .. 119
8.4 Variables ... 120
8.5 Command Overview ... 122
8.6 Command Descriptions for GCS 2.0 ... 128
8.7 Error Codes ... 203

9 Adapting Settings 227

9.1 Settings of the C-863.12 ... 227
9.2 Changing Parameter Values in the C-863.12 .. 227

9.2.1 General Commands for Parameters .. 228
9.2.2 Commands for Fast Access to Individual Parameters 228
9.2.3 Saving Parameter Values in a Text File .. 229
9.2.4 Changing Parameter Values: General Procedure 230

9.3 Creating or Changing a Positioner Type ... 232
9.4 Parameter Overview... 236

10 Maintenance 245

10.1 Cleaning the C-863.12 .. 245
10.2 Updating Firmware ... 245

11 Troubleshooting 249

12 Customer Service 253

13 Technical Data 255

13.1 Specifications .. 255
13.1.1 Data Table .. 255
13.1.2 Maximum Ratings .. 257
13.1.3 Ambient Conditions and Classifications .. 257

13.2 Dimensions ... 258
13.3 Pin Assignment ... 259

13.3.1 Motor ... 259
13.3.2 I/O .. 260
13.3.3 C-170.IO Cable for Connecting to the I/O Socket 261
13.3.4 Joystick ... 262
13.3.5 C-819.20Y Cable for C-819.20 Joystick .. 263
13.3.6 RS-232 In and RS-232 Out .. 264
13.3.7 Power Adapter Connector ... 265

14 Old Equipment Disposal 267

15 European Declarations of Conformity 269

1 About this Document

C-863.12 Mercury Controller MS249E Version: 2.1.0 1

1.1 Objective and Target Group of this User Manual

This user manual contains the information necessary for using the C-863.12 as intended.

We assume that the user has basic knowledge of closed-loop systems, motion control concepts,
and applicable safety measures.

1.2 Symbols and Typographic Conventions

The following symbols and typographic conventions are used in this user manual:

 NOTICE

Dangerous situation
Failure to comply could result in damage to the equipment.

 Precautions to avoid the risk

 INFORMATION
 Information for easier handling, tricks, tips, etc.

Symbol/Label Meaning
RS-232 Label on the product indicating an operating element

(example: RS-232 interface socket)

Warning sign on the product referring to detailed
information in this manual.

 Start > Settings Menu path in the PC software (example: to open the
menu, the Start and Settings menu items must be
selected successively)

POS? Command line or a command from PI's General
Command Set (GCS) (example: command to get the axis
position)

Device S/N Parameter name (example: parameter where the serial
number is stored)

5 Value that must be entered or selected via the PC
software

1 About this Document

1 About this Document

2 Version: 2.1.0 MS249E C-863.12 Mercury Controller

1.3 Definition of Terms

Term Explanation

Axis Also referred to as "logical axis". The logical axis represents the motion
of the mechanics in the firmware of the C-863.12. For mechanics that
allow motion in several directions (e.g., in X, Y, and Z), each direction of
motion corresponds to a logical axis.

Daisy chain Wiring diagram by which one controller is connected to the next in
sequence (series connection principle). Here the first controller is
connected directly to the PC. The additional controllers are always
connected to the ones that precede them so that a chain is formed.
The signal to and from a controller goes to the PC via the previous
controllers.

Dynamics profile Comprises the target position, velocity, and acceleration of the axis
calculated by the profile generator of the C-863.12 for any point in
time of the motion. The calculated values are called "commanded
values".

Firmware Software that is installed on the controller.

Volatile memory RAM module where the parameters are saved when the controller is
switched on (working memory). The parameter values in the volatile
memory determine the current behavior of the system.
The parameter values in the volatile memory are also referred to as
"Active Values" in the PC software from PI.

GCS PI General Command Set: command set for PI controllers

Incremental position
sensor

Sensor (encoder) for detecting changes of position or changes of angle.
Signals from the incremental position sensor are used for axis position
feedback. After the controller is switched on, referencing must be done
before absolute target positions can be commanded and reached.

PC software Software installed on the PC.

Nonvolatile memory Memory module (read-only memory, e.g., EEPROM or flash memory)
from which the default values of the parameters are loaded into the
volatile memory when the controller is started.
In the PC software from PI, the parameter values in the nonvolatile
memory are also referred to as "startup values".

Positioner Mechanics connected to the C-863.12. In the case of positioners with
just one motion axis, the designation "axis" is synonymous with
"positioner". Positioners that allow motion in several axes are also
designated as "multi-axis positioners". For these positioners, a
distinction must be made between the individual axes.

Control value The control value is the input for the PWM converter of the C-863.12.
The PWM converter converts the control value into the PWM signal for
the axis of the positioner.

1 About this Document

C-863.12 Mercury Controller MS249E Version: 2.1.0 3

1.4 Figures

For better understandability, the colors, proportions, and degree of detail in illustrations can
deviate from the actual circumstances. Photographic illustrations may also differ and must not
be seen as guaranteed properties.

1.5 Other Applicable Documents

The devices and software tools from PI mentioned in this documentation are described in
separate manuals.

Description Document

Short instructions for the installation and
startup of the C-863.12

MS242EK Short Instructions for Digital Motor
Controllers

PI GCS driver library for use with NI LabVIEW
software

SM158E Software Manual

PI MATLAB Driver GCS 2.0 SM155E Software Manual
PI GCS 2.0 DLL SM151E Software Manual
GCS array
data format description

SM146E Software Manual

PIMikroMove SM148E Software Manual
PIStages3Editor: Software for managing the
positioner database

SM156E Software Manual

PIUpdateFinder: Updating PI Software A000T0028 User Manual
PI Software on ARM-Based Platforms A000T0089 Technical Note
Downloading manuals from PI: PDF file with
links to the manuals for digital electronics and
software from PI. Supplied with the PI
software.

A000T0081 Technical Note

1 About this Document

4 Version: 2.1.0 MS249E C-863.12 Mercury Controller

1.6 Downloading manuals

 INFORMATION
 If a manual is missing or problems occur with downloading:

 Contact PI's customer service (p. 253).

Downloading manuals
1. Open the website www.pi.ws.

2. Search the website for the product number (e.g., C-863.12).

3. In the search results, select the product to open the product details page.

4. Select Downloads.

Manuals are shown under Documentation. Software manuals are shown under General
Software Documentation.

5. For the desired manual, select ADD TO LIST and then REQUEST.

6. Fill out the request form and select SEND REQUEST.

The download link will then be sent to the email address entered.

2 Safety

C-863.12 Mercury Controller MS249E Version: 2.1.0 5

2.1 Intended Use

The C-863.12 is a laboratory device as defined by DIN EN 61010. It is intended for indoor use
and use in an environment that is free of dirt, oil, and lubricants.

In accordance with its design, the C-863.12 is intended for operating PI positioners equipped
with DC motors or integrated PWM motor drivers.

The C-863.12 is intended for closed-loop operation with incremental position sensors. In
addition, it can read and process the reference point and limit switch signals from the
connected positioner.

The C-863.12 may only be used in compliance with the technical specifications and instructions
in this user manual. The user is responsible for process validation.

2.2 General Safety Instructions

The C-863.12 is built according to state-of-the-art technology and recognized safety standards.
Improper use of the C-863.12 may result in personal injury and/or damage to the C-863.12.

 Use the C-863.12 for its intended purpose only, and only when it is in perfect condition.

 Read the user manual.

 Immediately eliminate any faults and malfunctions that are likely to affect safety.

The operator is responsible for installing and operating the C-863.12 correctly.

 Install the C-863.12 near the power supply so that the power plug can be quickly and
easily disconnected from the mains.

 Use the components supplied (power supply and power cord) to connect the C-863.12
to the power supply.

 If one of the components supplied for connecting to the power supply has to be
replaced, use a sufficiently rated component.

2 Safety

2 Safety

6 Version: 2.1.0 MS249E C-863.12 Mercury Controller

2.3 Organizational Measures

User manual
 Keep this user manual with the C-863.12 always.

The latest versions of the user manuals are available for download on our website (p.
3).

 Add all manufacturer information such as supplements or technical notes to the user
manual.

 If you give the C-863.12 to other users, also include this user manual as well as other
relevant information provided by the manufacturer.

 Always work according to the complete user manual. The equipment can be damaged if
your user manual is incomplete and is therefore missing important information.

 Install and operate the C-863.12 only after you have read and understood this user
manual.

Personnel qualification
The C-863.12 may only be installed, started up, operated, maintained, and cleaned by
authorized and appropriately qualified personnel.

3 Product Description

C-863.12 Mercury Controller MS249E Version: 2.1.0 7

3.1 Product View

3.1.1 Front Panel

Figure 1: Front panel of the C-863.12

Labeling Type Function

Mini-USB type B Universal serial bus for connection to the PC; do not

connect if RS-232 In is already connected.
RS-232 In D-sub 9 (m) (p. 263) Serial connection to the PC or to the previous

controller in a daisy chain network; do not connect to
the PC if the USB interface is already connected.

RS-232 Out D-sub 9 (f) (p. 263) Serial connection to the subsequent controller in a
daisy chain network

STA LED green Controller state:
 Lights up continuously: C-863.12 is ready for

normal operation
 Flashing: C-863.12 is in firmware update mode
 Off: C-863.12 is not connected to the supply

voltage

ERR LED red Error indicator:
 On: Error (error code ≠ 0)
 Off: No error (error code = 0)
The error code can be queried with the ERR?
command. The query resets the error code to zero
and the LED is switched off.

3 Product Description

3 Product Description

8 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Labeling Type Function

Mode
Baud
Addr

8-bit DIP switch (p.
53)

Setting of
 Device address (Addr)
 Baud rate for communication with the PC (Baud)
The switches 7and 8 (Mode) have no function.

3.1.2 Rear Panel

Figure 2: Rear panel of the C-863.12

Labeling Type Function

12 to 48 VDC
Max. 2 A

DC power socket
(Kycon), 4-pole (f),
lockable (p. 265)

Connector for the supply voltage

I/O Mini-DIN, 9-pole (f)
(p. 260)

Digital inputs/outputs:
 Outputs: Trigger external devices
 Inputs: Use in macros or as switch signals
Analog inputs:
 Use in macros or for scanning processes

Joystick Mini-DIN, 6-pole (f)
(p. 261)

Connector for analog joystick
 Inputs for signals from the joystick axes and

buttons
 Output for the supply voltage of the joystick

Motor HD D-sub 26 (f) Positioner's connector
 Output for the motor's control signals
 Input of the signals of the incremental position

sensor
 Signal input from the limit switches and reference

switch

3 Product Description

C-863.12 Mercury Controller MS249E Version: 2.1.0 9

Labeling Type Function

 Screw and toothed
washer
Grounding the C-
863.12 (p. 45)

Ground connection
If potential equalization is required, the screw can be
connected to the grounding system.

3.2 Type Plate

Labeling Function

 Data matrix code (example; contains the serial number)

C-863.12 Product name

 Manufacturer's logo

116056789 Serial number (example), individual for each C-863.12
Meaning of each position (from the left): 1 = internal
information, 2 and 3 = year of manufacture, 4 to 9 = consecutive
number

Country of origin: Germany Country of origin

 Warning sign "Pay attention to the manual!"

 Old equipment disposal (p. 267)

 CE conformity mark

WWW.PI.WS Manufacturer's address (website)

3.3 Scope of Delivery

Item Component

C-863.12 Controller
C-501.24120DIN4 Wide input range power supply 24 V 120 W, mini-DIN, 4-pin
3763 Power cord
000036360 USB cable (type A to mini B) for connecting to the PC
C-815.34 RS-232 null modem cable, 3 m, 9/9-pin
C-862.CN Network cable for daisy chain network, 30 cm
000084853 4 adhesive feet for C-863.12
C-990.CD1 Data storage device with PC software from PI
MS242EK Short instructions for digital motor controllers

3 Product Description

10 Version: 2.1.0 MS249E C-863.12 Mercury Controller

3.4 Optional Accessories

Item Component

C-862.CN2 Network cable for daisy chain network, 3 m

C-819.20 Analog joystick for 2 axes, details see"Joysticks Available" (p. 97)

C-819.20Y Y cable for connecting 2 controllers to C-819.20 joystick

C-819.30 Analog joystick for 3 axes, details see"Joysticks Available" (p. 98)

C-170.PB Pushbutton box with 4 buttons and 4 LEDs

Connection to the I/O socket of the
C-863.12, sends 4 TTL input signals
and displays the state of the 4 digital
outputs via the LEDs.

C-170.IO I/O cable, 2 m, open end (p. 261)

To order, contact our customer service department (p. 253).

3 Product Description

C-863.12 Mercury Controller MS249E Version: 2.1.0 11

3.5 Overview of PC Software

3.5.1 PI Software Suite
A data storage device with the PI Software Suite is included in the C-863.12's scope of delivery
(p. 9). Some components of the PI Software Suite are described in the table below. For
information on the compatibility of the software with PC operating systems see the C-990.CD1
Release News in the root directory of the data storage device.

Libraries, drivers

PC software Short description Recommended use

Dynamic program
library for GCS

Allows software programming for the C-
863.12 with programming languages such
as C++. The functions in the dynamic program
library are based on the PI General Command
Set (GCS).

For users who would like
to use a dynamic
program library for their
application.
Is required for
PIMikroMove.
Is required for NI
LabVIEW drivers.

Drivers for use with
NI LabVIEW
software

NI LabVIEW is a software for data acquisition
and process control (must be ordered
separately from National Instruments).The
driver library is a collection of virtual
instrument drivers for PI controllers.
The drivers support the PI GCS.

For users who want to
use NI LabVIEW to
program their
application.

MATLAB drivers MATLAB is a development environment and
programming language for numerical
calculations (must be ordered separately
from MathWorks).
The PI MATLAB driver consists of a MATLAB
class that can be included in any MATLAB
script. This class supports the PI GCS.
The PI MATLAB driver does not require any
additional MATLAB toolboxes.

For users who want to
use MATLAB to program
their application.

USB driver Driver for the USB interface For users who want to
connect the controller to
the PC via the USB
interface.

3 Product Description

12 Version: 2.1.0 MS249E C-863.12 Mercury Controller

User software

PC software Short description Recommended use

PIMikroMove Graphic user interface for Windows with
which the C-863.12 and other controllers
from PI can be used.
 The system can be started without

programming effort
 Graph of motions in open-loop and

closed-loop operation
 Macro functionality for storing command

sequences on the PC (host macros)
 Support of HID devices
 Complete environment for command

entry, for trying out different commands
PIMikroMove uses the dynamic program
library to supply commands to the controller.

For users who want to do
simple automation tasks
or test their equipment
before or instead of
programming an
application. A log
window showing the
commands sent makes it
possible to learn how to
use the commands.

PITerminal Terminal program that can be used for nearly
all PI controllers.

For users who want to
send GCS commands
directly to the controller.

PIStages3Editor Program for opening and editing positioner
databases in .db format.

For users who want to
deal with the contents of
positioner databases
more intensively.

PIUpdateFinder Checks the PI software installed on the PC. If
more current versions of the PC software are
available on the PI server, downloading is
offered.

For users who want to
update the PC software.

PIFirmwareManager Program for user support when updating
firmware of the C-863.12.

For users who want to
update the firmware.

3 Product Description

C-863.12 Mercury Controller MS249E Version: 2.1.0 13

3.6 Positioner Databases

You can select a parameter set appropriate for your positioner from a positioner database in
the PC software from PI. The PC software transfers the values of the selected parameter set to
the volatile memory of the controller.

File name Description

PISTAGES3.DB Delivery includes parameter sets for all standard positioners from PI and
PI miCos and is automatically saved to the PC when the PC software is
installed
New parameter sets can be created, edited, and saved (p. 232).

<Produkt>.db
e.g.:
M-xxxxxxx.db

Includes the parameter set for a custom positioner. In order for the
parameter set to be selected in the PC software, it must be added to the
PISTAGES3.DB first, see "Installing Custom Positioner Databases" (p. 43).

Parameters loaded from a positioner database are marked in color in the parameter overview
(p. 236).

For more information on the positioner database, see the manuals for the PIStages3Editor and
the PI GCS program library.

 INFORMATION
 If the pistages2.dat and pimicosstages2.dat positioner databases are on your PC:

Positioner databases in .dat format are only installed for compatibility reasons and not used
for the C-863.12 described in this manual.

3 Product Description

14 Version: 2.1.0 MS249E C-863.12 Mercury Controller

3.7 Communication Interfaces

3.7.1 Control of PI Systems
Basically, systems from PI can be controlled as follows:

3 Product Description

C-863.12 Mercury Controller MS249E Version: 2.1.0 15

3.7.2 C-863.12 Communication Interfaces
The C-863.12 can be controlled with ASCII commands from a PC: The connection to the PC can
be made via a direct connection or via a daisy-chain network. The following interfaces of the C-
863.12 can be used for direct connection to the PC:

 Serial RS-232 connection

 USB connection

Only one of the two interfaces may be connected to the PC at all times.

Default communication settings

Interface Property Default value

RS-232 Baud rate 115200
Settings for DIP switches 5 and 6; see "Baud
Rate" (p. 55)
Other:
8 data bits and 1 stop bit, without parity;
internal buffers do not require a handshake

 INFORMATION
 A USB UART module (FTDI) is used for the USB interface in the C-863.12. Therefore, if the C-

863.12 is connected via USB and switched on, the USB interface is also shown as COM port in
the PC software. The C-863.12 uses a baud rate of 115200 for this interface.

Daisy chain network
Using a daisy chain network, up to 16 controllers can be connected to the PC via a single RS-232
or USB connection. Interlinking occurs in series. See also "Definition of Terms" (p. 2).

3 Product Description

16 Version: 2.1.0 MS249E C-863.12 Mercury Controller

3.8 Functional Principles

3.8.1 Block Diagram
The C-863.12 controls the motion of the logical axis of a positioner. The following block diagram
shows how the C-863.12 generates the output signal for the axis connected:

Figure 3: C-863.12: Control value generation

The C-863.12 supports both positioners with PWM amplifier and positioners without PWM
amplifier (p. 45). The positioner must be equipped with an encoder with A/B quadrature signal
transmission for feedback of the current position.

3.8.2 Motor Control
The maximum output voltage of the C-863.12 is only as high as its supply voltage. To avoid
damaging the motor by excessive operating voltage, the C-863.12 scales its output voltage to
the motor connected.

Details on scaling:

 The C-863.12 compares its current supply voltage (maximum 48 V) to the value of
parameter 0x7C (Maximum Motor Output (V)), which specifies the maximum
permissible operating voltage of the motor (maximum of 48 V depending on the motor
type; see the documentation for the positioner).

 Depending on the result of the comparison, the C-863.12 scales the control value for
the PWM converter (see block diagram (p. 16)) and therefore the output voltage as
well.

3 Product Description

C-863.12 Mercury Controller MS249E Version: 2.1.0 17

Example:

The C-863.12 is operated with a 24 V power adapter. The motor of the positioner connected is
designed for a maximum operating voltage of 12 V, which means that parameter 0x7C has a
value of 12. The PWM signal then has a duty cycle of maximum 50 %, i.e., the output voltage is
maximum 12 V.

 INFORMATION
 If the positioner is equipped with a PWM amplifier that is supplied via a separate power

adapter:
 To achieve the optimum motor performance, use a power adapter for the C-863.12 that

supplies the same output voltage as the power adapter for the PWM amplifier.

The C-863.12 is configured for the maximum operating voltage of the motor with the following
parameters:

Parameter Description and Possible Values

Maximum Motor
Output (V)
0x7C

Maximum permissible operating voltage of the motor
0 to 48 V

Maximum Motor
Output
0x9

Maximum permissible absolute measure of the control value
(dimensionless)
0 to 32767
The value 32767 (standard) corresponds to the maximum permissible
operating voltage of the motor, which is specified by parameter 0x7C.
The standard value of parameter 0x9 should not be changed.

3.8.3 Commandable Elements
The following table contains the elements that can be commanded with GCS commands (p.
127).

Element Num
ber

Identifi
er

Description

Logical axis 1 1
(modifi-
able)

The logical axis represents the motion of the positioner in the
firmware of the C-863.12. It corresponds to an axis of a linear
coordinate system.
All commands for the motion of a positioner refer to logical
axes.
Motion for logical axes is commanded in the firmware of the
C-863.12 (i.e., for the directions of motion of a positioner).
The motion commands MOV and MVR are for example,
available in closed-loop operation. The motion command for
open-loop operation is SMO.
The axis identifier can be queried with the SAI? command

3 Product Description

18 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Element Num
ber

Identifi
er

Description

and modified with the SAI command. It can consist of up to
8 characters; valid characters are
1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ-_
The new axis identifier is only transferred to the volatile
memory of the C-863.12. A changed axis identifier can be
stored permanently in the C-863.12 with the WPA command
(p. 201).

Analog inputs 7 1 to 7 The analog input lines with the identifiers 1 to 4 are the
inputs 1 to 4 of the I/O socket (p. 260). Their number is
displayed with the TAC? command and their values can be
queried with the TAV? command. Note that these lines can
also be used as digital inputs (see below).
Additional analog input lines are located at the Joystick
socket (p. 261).
These lines are not output via TAC? and TAV?.
The values of all inputs can be recorded via record option 81
of the DRC command.

Digital outputs 4 1 to 4 1 to 4 identify digital output lines 1 to 4 of the I/O socket (p.
260).
For further information, see "Digital Output Signals" (p. 78).

Digital inputs 4 1 to 4 1 to 4 identify digital input lines 1 to 4 of the I/O socket (p.
260), which can also be used as analog inputs (see above).
For further information, see "Digital Input Signals" (p. 86).

Joystick 1 1 A joystick can be connected to the C-863.12's Joystick socket
(p. 261).

Joystick axis 1 1 Pin 4: Commanding as axis 1 of joystick 1

Joystick button 1 1 Pin 6: Commanding as button 1 of joystick 1

For further information, see "Joystick Control" (p. 91).
For data recorder configuration with the DRC command, the
following data source identifiers apply:
5 = axis 1 of joystick 1
6 = button 1 of joystick 1

Data recorder
table

4 1 to 4 The C-863.12 has 4 data recorder tables (query with TNR?)
with 1024 data points per table.

Controller
address

1 1 to 16 The controller address can be set in the range from 1 to 16
with the DIP switches on the front panel of the C-863.12. In a
daisy chain (p. 47), each controller must have a unique
address (p. 119).

Overall system 1 1 C-863.12 as an overall system

3 Product Description

C-863.12 Mercury Controller MS249E Version: 2.1.0 19

3.8.4 Important Components of the Firmware
The firmware of the C-863.12 provides the following functional units:

Firmware
Component

Description

ASCII commands Communication with the C-863.12 can be managed using the
commands of the PI General Command Set (GCS; version 2.0). The GCS
is independent of the hardware (controller, positioners connected).
Examples of the use of GCS:
 Configuring the C-863.12
 Setting the operating mode
 Starting motion of the positioner
 Getting system and position values
You can find a list of the available commands in the "Command
Overview" section (p. 122).

Parameter Parameters reflect the properties of the positioner connected (e.g.,
travel range) and specify the behavior of the C-863.12 (e.g., settings for
the servo algorithm or for the use of the digital inputs).
Parameter values can be changed to adapt the system to the particular
application. For further information, see "Adapting Settings" (p. 227).
Write access for the parameters of the C-863.12 is defined by
command levels. After the controller is switched on or rebooted, the
active command level is always 0. On command levels > 1, write access
is only available to PI service personnel.

Profile generator and
servo algorithm

In closed-loop operation, a profile generator generates the dynamics
profile. The position error that results from the difference between the
calculated dynamics profile and the actual position (sensor feedback)
runs through a PID servo algorithm. Further information can be found
in the sections "Generation of Dynamics Profile" (p. 22), "Servo
Algorithm and Other Control Value Corrections" (p. 26) and "Motion
Triggering" (p. 21).

Data Recorder The C-863.12 contains a real-time data recorder (p. 76). The data
recorder can record various signals (e. g., position, analog input) from
different data sources (e. g., logical axes or input channels).

Macros The C-863.12 can store macros (p. 99). Command sequences can be
defined and stored permanently in the nonvolatile memory of the
device via the macro function. A startup macro can be defined that
runs each time the C-863.12 is switched on or rebooted. The startup
macro simplifies stand-alone operation (operation without a
connection to the PC). Further information can be found in the
"Controller Macros" section (p. 99).

The firmware can be updated with a tool (p. 245).

3 Product Description

20 Version: 2.1.0 MS249E C-863.12 Mercury Controller

3.8.5 Operating Modes
The C-863.12 supports the following operating modes:

Operating Mode Description

Closed-loop operation
(servo mode On)

A profile generator calculates the dynamics profile from the values
specified for target position, velocity, acceleration, and deceleration.
The position error that results from the difference between the
calculated dynamics profile and the actual position (sensor feedback)
runs through a PID servo algorithm (proportional integral derivative).
Additional corrections can be made as well. The result is the control
value for the PWM converter integrated in the C-863.12. Further
information can be found in the sections "Generation of Dynamics
Profile" (p. 22) and "Servo Algorithm and Other Control Value
Corrections" (p. 26).

Open-loop operation
(servo mode Off)

In open-loop operation, the C-863.12 does not calculate a dynamics
profile and does not evaluate the signals of the position sensor. As a
result, the positioner can move unbraked to the end of the travel range
and, despite the limit switch function, strike the hard stop.

 INFORMATION
 The C-863.12 is intended for closed-loop operation with incremental position sensors (servo

mode On). After switch-on, open-loop operation is active by default (servo mode Off).
 Query the current operating mode with the SVO?, #4 or SRG? commands.
 Activate closed-loop operation with the SVO command.
 If necessary, program a startup macro that starts the C-863.12 via the SVO command in

closed-loop operation; see "Setting up a startup macro" (p. 107).
 Avoid motion in open-loop operation.

3.8.6 Physical Units
The C-863.12 supports various units of length for positions. Adapting is done by a factor that
converts the incremental encoder counts into the physical unit of length required. The
conversion factor is set with the following parameters:

Parameters Description and Possible Values

Numerator Of The
Counts-Per-
Physical-Unit Factor
0xE

Numerator and denominator of the factor for counts per physical
length unit
1 to 1.000.000.000 for each parameter.
The factor for the counts per physical unit of length specifies the unit
of length for position queries and motion commands in closed-loop
operation.
The values of every parameter, whose unit is either the physical unit
of length itself or a unit of measurement based on it, are

Denominator Of The
Counts-Per-
Physical-Unit Factor
0xF

3 Product Description

C-863.12 Mercury Controller MS249E Version: 2.1.0 21

Parameters Description and Possible Values
automatically adapted to the set factor.
The factor for the counts per physical unit of length has no impact
on the stability of the servo loop but is used for the input and output
scaling of position values.

The unit symbol can be customized for display purposes with the following parameter:

Parameters Description and Possible Values

Axis Unit
0x07000601

Unit symbol
Maximum of 20 characters.
For example, the unit symbol is "MM", if the factor for the counts
per physical unit of length is set with parameters 0xE and 0xF so that
the encoder counts are converted into millimeters. The unit for
rotation stages is normally "deg".
The value of the parameter 0x07000601 is not evaluated by the C-
863.12 but is used by the PC software for display purposes.
Examples:
1 encoder count = 100 nm
Counts per physical length unit: 10000:1
 → Unit symbol: mm
1 encoder count = 0.254 mm
Counts per physical length unit: 100:1
 → Unit symbol: inch

3.8.7 Motion Triggering

Motion in closed-loop operation

Trigger of the motion Commands Description

Motion commands,
sent from the
command line or via
the PC software

MOV, MVR Motion to absolute or relative target position

GOH Motion to zero position
STE Starts a step and records the response
FNL, FPL, FRF Starts referencing moves
FED Starts moves to signal edges

Controller macros
with motion
commands

MAC Calls a macro function. Permits recording, deleting,
and running macros on the controller.
Any commands can be sent from the command line
while a macro is running on the controller. The
macro content and motion commands received

3 Product Description

22 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Trigger of the motion Commands Description
from the command line can overwrite each other.

Additional macro commands and information see "Controller Macros"
(p. 99).

Joystick control
The joystick controls
the velocity of the
axis (commanded
velocity output from
the profile generator).

JON Activates or deactivates a joystick connected to the
controller.
Motion commands are not allowed when joystick
control is activated for the axis.

JAX Specifies the axis controlled by a joystick connected
to the controller.

Additional joystick commands see "Joystick Control" (p. 91).

 INFORMATION
 Absolute target positions can only be commanded if the axis was referenced beforehand; see

"Referencing" (p. 34).

Motion in open-loop operation
Motion is triggered by the SMO command, which specifies the control value for the PWM
converter in the C-863.12.

Joystick control is not possible in open-loop operation.

3.8.8 Generation of the Dynamics Profile
In closed-loop operation the profile generator performs calculations to specify the target
position, velocity and acceleration of the axis for any point in time (dynamics profile). The
values calculated are called commanded values. The dynamics profile generated by the profile
generator of the C-863.12 depends on the motion parameters which are given by commands (p.
127), parameters and/or by joystick.

Motion
parameter

Comman
ds

Parameters Remarks

Acceleration (A) ACC
ACC?

Acceleration in closed-
loop operation
(parameter 0xB;
physical unit of
length/s2);
change with the ACC
command or with SPA
/ SEP; can be saved
with WPA.

Is limited by parameter 0x4A
(maximum acceleration in closed-
loop operation).

Deceleration (D) DEC
DEC?

Deceleration in closed-
loop operation

Is limited by parameter 0x4B
(maximum deceleration in closed-

3 Product Description

C-863.12 Mercury Controller MS249E Version: 2.1.0 23

Motion
parameter

Comman
ds

Parameters Remarks

(parameter 0xC;
physical unit of
length/s2);
change with the DEC
command or with SPA
/ SEP; can be saved
with WPA.

loop operation).

Velocity (V) VEL
VEL?

Velocity in closed-loop
operation (parameter
0x49; physical unit of
length/s);
change with the VEL
command or with SPA
/ SEP; can be saved
with WPA.

Is limited by parameter 0xA
(maximum velocity in closed-loop
operation).
When a joystick is connected to the
C-863.12 and the joystick is
activated with the JON command, a
factor is applied to the current
velocity set with the VEL
command. Further information see
"Joystick Control" (p. 91).

Target position at
the end of the
motion

MOV
MVR
GOH
STE

- When a joystick is connected to the
C-863.12 and the joystick is
activated with the JON command,
the soft limits are set for the
particular target position. When
disabling the joystick, the target
position is set to the current
position for the joystick-controlled
axes. Further information see
"Joystick Control" (p. 91).

When switching on the servo mode
with the SVO command or when
stopping the axis motion with the
#24, STP or HLT commands, the
target position is set to the current
position.

The profile generator of the C-863.12 only supports trapezoidal velocity profiles: The axis
accelerates linearly (based on the acceleration value specified) until it reaches the specified
velocity. It continues to move with this velocity until it decelerates linearly (based on the
deceleration value specified) and stops at the specified target position.

3 Product Description

24 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Figure 4: Basic trapezoidal velocity profile; A = acceleration, D = deceleration, V = velocity

If the deceleration has to begin before the axis reaches the specified velocity, the profile will
not have a constant velocity portion and the trapezoid becomes a triangle.

Figure 5: Basic trapezoidal velocity profile; A = acceleration, D = deceleration, no constant velocity

The edges for acceleration and deceleration can be symmetrical (acceleration = deceleration) or
asymmetrical (acceleration ≠ deceleration). The acceleration value is always used at the start of
the motion. After that the acceleration value is used during an increase in the absolute velocity
and the deceleration value during a decrease in the absolute velocity. If no motion parameters
are changed during the course of the motion, the acceleration value is used until the maximum
velocity is reached and the deceleration value is used for the decrease in velocity down to zero.

3 Product Description

C-863.12 Mercury Controller MS249E Version: 2.1.0 25

Figure 6: Complex trapezoidal profile with parameter changes; A = acceleration; D = deceleration; V1,

V2, -V2 = velocities

All motion parameters can be changed while the axis is in motion. The profile generator will
always attempt to stay within the permissible motion limits specified by the motion
parameters. If the target position is changed during the motion so that overshooting is
unavoidable, the profile generator will decelerate to the extent of stopping and reverse the
direction of motion in order to reach the specified position.

3 Product Description

26 Version: 2.1.0 MS249E C-863.12 Mercury Controller

3.8.9 Servo Algorithm and Other Control Value Corrections

Figure 7: PID algorithm, offset correction and feed-forward control of the velocity (KVff); the notch filter

is not shown here

In closed-loop operation, the control value for the PWM converter integrated in the C-863.12
and therefore the settling behavior of the system is optimized via the following corrections:

 Servo algorithm: The position error, which results from the difference between the
calculated dynamics profile (see "Generation of Dynamics Profile" (p. 22)) and the
actual position (sensor feedback), runs through a PID servo algorithm (proportional
integral derivative).

 Dynamics profile corrections: The dynamics profile generated can be subject to an
offset correction and a feed-forward control of the velocity.

Regardless of the operating mode, the control value can be subjected to an additional
correction via the notch filter.

Servo algorithm
The servo algorithm uses the following servo control parameters. The optimum servo control
parameter setting depends on your application and your requirements; see "Optimizing Servo
Control Parameters" (p. 68).

Parameters Description and Possible Values

P Term
0x411

Proportional constant (dimensionless)
0 to 32767
Aim: Rapid correction of the position error

I Term Integration constant (dimensionless)

3 Product Description

C-863.12 Mercury Controller MS249E Version: 2.1.0 27

Parameters Description and Possible Values
0x412 0 to 32767

Objective: Reduction of static position error
D Term
0x413

Differential constant (dimensionless)
0 to 32767
Aim: Damping of rapid control oscillations

I-Limit
0x414

Limit of the integration constant (dimensionless)
0 to 32767

D Term Delay (No. Of
Servo Cycles)
0x71

D term delay
The D term can be calculated as a floating average over several servo
cycles. The parameter specifies how many values (i.e., servo cycles)
are to be used for averaging.

The input of the servo algorithm can be configured for the C-863.12 with the following
parameters:

Parameters Description and Possible Values

Numerator Of The Servo
Loop Input Factor
0x5A

Numerator and denominator of the servo-loop input factor
1 to 1,000,000 for both parameters
The servo-loop input factor decouples the servo control parameters
from the encoder resolution.
The servo-loop input factor is independent of the factor for counts
per physical length unit (0xE and 0xF).
Numerator and denominator of the servo-loop input factor should
not be changed.

Denominator Of The
Servo-Loop Input Factor
0x5B

Corrections of the dynamics profile
The dynamics profile corrections for closed-loop operation can be configured via the
parameters listed below:

Parameters Description and Possible Values

Motor Offset Positive
0x33

Offset for the positive direction of motion (dimensionless).
0 to 32766

Motor Offset Negative
0x34

Offset for the negative direction of motion (dimensionless).
0 to 32766

Motor Drive Offset
0x48

Velocity-dependent offset (dimensionless). Is used if the
commanded velocity does not equal zero (i.e., if the end of the
dynamic profile has still not been reached).
0 to 32766

3 Product Description

28 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Parameters Description and Possible Values

Kvff
0x415

Feed-forward control of the commanded velocity
0 to 32767
Aim: Minimization of the position error

Control value corrections regardless of the operating mode
The parameters listed below correct the control value both in closed- and open-loop operation.

Parameters Description and Possible Values

Notch Filter Frequency 1
(Hz)
0x94

Frequency of the first notch filter
40 to 20000 Hz
The appropriate frequency component is reduced in the control
value to compensate for undesired resonances in the mechanics. An
adjustment can be particularly useful in the case of very high loads.

Notch Filter Edge 1
0x95

Rise of the edge of the first notch filter (dimensionless)
0.1 to 10
This parameter value should not be changed.

Filtering of the encoder signals
For slow motion of the connected positioner, it is possible to use the following parameter to set
a filter that reduces any interference in the encoder signal.

Parameter Description and possible values

Quadrature Encoder
Filter
0x03003900

Filter for the AB encoder signal:
0 = Filter disabled (default setting)
1 = fast: Filter for motion at high velocity
2 = medium: Filter for motion at medium velocity
3 = slow: Filter for motion at low velocity

When the filter is disabled (0), the controller processes the encoder
signals as quickly as possible.
For slower motion, it may be purposeful to set the filter to one of
the 3 steps: from 1 for rapid motion (least filtering) to 3 for slow
motion (strongest filtering).
Also in the event of problems with the encoder signal, the filter can
be used to reduce interference.
The filter does not have to be set for normal operation.

3 Product Description

C-863.12 Mercury Controller MS249E Version: 2.1.0 29

3.8.10 On-Target State
In closed-loop operation, the on-target state can be used to check whether the target position
has been reached:

 On-target state = true (1): the target position is considered as reached

 On-target state = false (0): the target position is considered as not reached

The C-863.12 determines the on-target state on the basis of the following criteria:

 Settling window around the target position (parameter 0x36)

 Delay time for setting the on-target state (parameter 0x3F)

The on-target state has the value true in the following cases:

 The current position is inside the settling window and stays there at least for the
duration of the delay time.

 If the value for the delay time is set to 0: The end of the dynamics profile is reached.

The on-target state can be read with the ONT?, #4 and SRG? commands.

In the On Target trigger mode (p. 82), the on-target state of the selected axis is output at the
selected trigger output.

Parameter Description and Possible Values

Settling Time (s)
0x3F

Delay time for setting the on-target state
0 to 1.000 s

Settling Window
(encoder counts)
0x36

Settling window around the target position
0 to 231 counts of the encoder
Specifies the window limits. If the current position exits the settling
window, the target position is no longer considered as reached.
The parameter value corresponds to half the width of the window. It
can be changed only if the servo mode is switched off.

3 Product Description

30 Version: 2.1.0 MS249E C-863.12 Mercury Controller

3.8.11 Reference Switch Detection
The C-863.12 receives the signal from the reference switch at the Motor socket (p. 259).

Reference switch detection by the C-863.12 can be configured with the following parameters:

Parameters Description and Possible Values

Invert Reference?
0x31

Should the reference signal be inverted?
0 = Reference signal not inverted
1 = Reference signal inverted
This parameter is used for inverting the reference signal whose
source can be either the reference switch or a digital input which is
used instead of the reference switch (p. 89).

Has Reference?
0x14

Does the positioner have a reference switch?
0 = Reference switch not installed
1 = Reference switch available (signal input on motor connector)
This parameter activates or deactivates referencing moves to the
installed reference switch.

Reference Signal Type
0x70

Reference signal type
0 = Direction-sensing reference switch (default setting). The signal
level changes when passing the reference switch.
1 = Pulse signal with a pulse width of several nanoseconds
(parameter 0x47 must be set correctly).
2 = Index pulse. The approach takes place via the negative limit
switch.

The signal from the reference switch of the positioner can be used for referencing moves. After
a referencing move to the reference switch, the controller knows the absolute axis position; see
"Referencing" (p. 34).

3.8.12 Limit Switch Detection
The C-863.12 receives limit switch signals at the Motor (p. 259) socket:

 Pin 12: Positive limit switch

 Pin 11: Negative limit switch

The following parameters can be used to configure how the C-863.12 detects the limit switches:

Parameters Description and Possible Values

Limit Mode
0x18

Signal logic of the limit switches
0 = Positive limit switch active high (pos-HI), negative limit switch
active high (neg-HI)
1 = Positive limit switch active low (pos-LO), neg-HI
2 = pos-HI, neg-LO
3 = pos-LO, neg-LO

3 Product Description

C-863.12 Mercury Controller MS249E Version: 2.1.0 31

Parameters Description and Possible Values

Has No Limit Switches?
0x32

Does the positioner have limit switches?
0 = Positioner has limit switches (signal inputs on motor connector)
1 = Positioner does not have limit switches
This parameter activates or deactivates a stop of the motion at the
limit switches installed.

Use Limit Switches Only
For Reference Moves?
0x77

Should the limit switches only be used for referencing moves?
0 = Use limit switches for stopping at the end of the travel range and
for referencing moves (default)
1 = Use limit switches only for referencing moves
This parameter is intended for use with rotation stages.
This parameter is only evaluated when the parameter 0x32 has the
value 0.

The signals from the limit switches (also end-of-travel sensors) of a linear positioner are used to
stop motion in front of the hard stop at both ends of the travel range. Because the set
deceleration is not taken into account here, there is a risk at high velocities that the positioner
will hit the hard stop anyway. To prevent this, soft limits (p. 31) can be set via parameters of the
C-863.12.

The limit switch signals can also be used for referencing moves. After a referencing move to a
limit switch, the controller knows the absolute axis position; see "Referencing" (p. 34).

3.8.13 Travel Range and Soft Limits
The following parameters of the C-863.12 reflect the physical travel range of the positioner and
define soft limits:

Parameter Description and Possible Values

Maximum Travel In
Positive Direction (Phys.
Unit)
0x15

Soft limit in positive direction (physical unit)
Based on the zero position. If this value is smaller than the position
value for the positive limit switch (which results from the sum of the
parameters 0x16 and 0x2F), the positive limit switch cannot be used
for referencing moves.
The value can be negative.

Value At Reference
Position (Phys. Unit)
0x16

Position value at the reference switch (physical unit)
The current position is set to this value if the axis has performed a
referencing move to the reference switch.
The parameter value is also used for calculating the position values
set after referencing moves to the limit switches; this also applies
when the mechanics do not have a reference switch.

Distance From Negative
Limit To Reference
Position (Phys. Unit)
0x17

Gap between reference switch and negative limit switch (physical
unit)
If the axis has performed a referencing move to the negative limit
switch, the current position is set to the difference between the
values of parameters 0x16 and 0x17.

3 Product Description

32 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Parameter Description and Possible Values

Distance From
Reference Position To
Positive Limit (Phys.
Unit)
0x2F

Gap between reference switch and positive limit switch (physical
unit)
If the axis has performed a referencing move to the positive limit
switch, the current position is set to the sum of the values of
parameters 0x16 and 0x2F.

Maximum Travel In
Negative Direction
(Phys. Unit)
0x30

Soft limit in a negative direction (physical unit)
Based on the zero position. If this value is larger than the position
value for the negative limit switch (which results from the difference
between the parameters 0x16 and 0x17), the negative limit switch
cannot be used for referencing moves.
The value can be negative.

 INFORMATION
 The C-863.12 determines the soft limits from parameters 0x15 (Maximum Travel In Positive

Direction (Phys. Unit)) and 0x30 (Maximum Travel In Negative Direction (Phys. Unit)):
 The limits establish the permissible travel range in closed-loop operation.
 Motion commands are executed only if the commanded position is within these soft limits.
 The limits always refer to the current zero position.
 Appropriate values are loaded when the positioner type is selected from the positioner

database.

Examples
The following examples refer to an axis of a positioner with incremental sensor, reference
switch and limit switches.

The distance between the negative and positive limit switches of the axis is 20 mm. The
reference switch has a distance of 8 mm to the negative limit switch and a distance of 12 mm to
the positive limit switch.

This switch setup of the axis is reflected in the following parameters:

 Parameter 0x17: Distance between negative limit switch and reference switch = 8 mm

 Parameter 0x2F: Distance between reference switch and positive limit switch = 12 mm

 INFORMATION
 The switch setup of the axis can be determined with the FED and POS? commands.

Example 1: Maximum travel range available

After referencing moves (p. 34), the current position is to have the following values:

 Move to the negative limit switch (start with FNL): current position = 0

 Move to the reference switch (start with FRF): current position = 8

3 Product Description

C-863.12 Mercury Controller MS249E Version: 2.1.0 33

 Move to the positive limit switch (start with FPL): current position = 20

As a result, parameter 0x16, which specifies the position value for the reference switch and is
included in the calculation of the position values for the limit switches during referencing
moves, has the value 8.

The travel range is not to be limited by soft limits. As a result, the respective parameters are set
as follows:

 Parameter 0x15 = 20

 Parameter 0x30 = 0

Figure 8: The travel range of the axis is not limited by soft limits.

After a referencing move of the axis to the reference switch (FRF command), query commands
return the following responses:

 TMN? returns the value 0

 TMX? returns the value 20

 POS? returns the value 8

Example 2: Travel range limited by soft limits

The zero position should be located at approximately a third of the distance between the
negative limit switch and the reference switch. As a result, parameter 0x16 now has the value
5.4.

A safety distance is to be put in place at both ends of the travel range by establishing soft limits.
As a result, the soft limits are set as follows:

 Parameter 0x15 = 16.4

 Parameter 0x30 = -2.1

3 Product Description

34 Version: 2.1.0 MS249E C-863.12 Mercury Controller

According to that, the axis can move 16.4 mm from the zero position in the positive direction
and 2.1 mm in the negative direction respectively. The limit switches can no longer be used for
referencing moves.

Figure 9: The travel range of the axis is limited by soft limits.

After a referencing move of the axis to the reference switch (FRF command), query commands
return the following responses:

 TMN? returns the value -2.1

 TMX? returns the value 16.4

 POS? returns the value 5.4

3.8.14 Referencing
When switching on or restarting, the controller does not know the absolute position of the axis.
Before absolute target positions can be commanded and reached, referencing must therefore
be done for the axis.

Referencing can be done in different ways:

 Referencing move (default): A referencing move moves the axis to a defined point, e.g.,
to the reference switch or to a limit switch. At this point, the current position is set to a
defined value. The controller now knows the absolute axis position.

 Setting the absolute position manually: If this referencing method was activated by the
RON command (p. 180), you can set the current position of the axis to an arbitrary
value at an arbitrary point using the POS command (p. 179). The axis is not moved
here. The controller knows the absolute axis position afterwards.

3 Product Description

C-863.12 Mercury Controller MS249E Version: 2.1.0 35

 INFORMATION
 During startup using PIMikroMove, referencing is done via a referencing move by default.

Knowledge of the commands and parameters described here is not needed for referencing
using PIMikroMove.

 INFORMATION
 To achieve maximum repeatability when referencing, each referencing move comprises the

following steps:
1. First move to the switch selected. The maximum velocity is specified via parameter 0x49

(Closed-Loop Velocity (Phys. Unit/s), equivalent to setting with the VEL command).

2. Stop on reaching the switch edge. The higher the velocity on approach, the farther the axis
overruns the edge of the switch (overshooting).

3. Move in the opposite direction to compensate for overshoot.

4. Second move to the switch selected. The maximum velocity is specified via parameter 0x50
(Velocity For Reference Moves (Phys. Unit/s), specific velocity for referencing moves only).

5. Stop when reaching the switch edge.

6. Move in the opposite direction to compensate for overshoot.

7. Set the current position to a defined value, referencing is finished.

The lower the velocity is when approaching the switch, the less the overshoot will be and the
higher the repeatability. Therefore, the maximum value of parameter 0x50 should be as large
as the value of parameter 0x49, though ideally substantially less.
The actual velocities during the referencing move are calculated from the values of the
following parameters and can be lower than the maximum values.
 Parameter 0x49 or 0x50
 Parameter 0x63 (Distance Between Limit And Hard Stop (Phys. Unit))
 Parameter 0xC (Closed-Loop Deceleration (Phys. Unit/s2))

Commands
The following commands are available for referencing:

Command Syntax Function
RON RON {<AxisID> <ReferenceOn>} Selects the referencing method:

 <ReferenceOn> = 0: An absolute position
value can be assigned with POS, or a
referencing move can be started with FRF,
FNL or FPL.

 <ReferenceOn> = 1 (default): A referencing
move must be started with FRF, FNL or FPL.
Using POS is not allowed.

3 Product Description

36 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Command Syntax Function
RON? RON? [{<AxisID>}] Gets the referencing method.
FRF FRF [{<AxisID>}] Starts a reference move to the reference

switch.
The approach depends on the value of the
Reference Signal Type parameter (ID 0x70):
 0 or 1: The approach always takes place

from the same side irrespective of the axis
position when the command is sent.

 2: The approach takes place via the
negative limit switch.

FRF? FRF? [{<AxisID>}] Queries whether referencing for an axis has
already been done.
1 = Referencing has been done
0 = Referencing has not been done

FNL FNL [{<AxisID>}] Starts a referencing move to the negative limit
switch.

FPL FPL [{<AxisID>}] Starts a referencing move to the positive limit
switch.

POS POS {<AxisID> <Position>} Sets the current axis position (does not trigger
motion) to reference the axis.

Parameters
Referencing moves can be configured with the following parameters:

Parameters Description and Possible Values

Closed-Loop
Deceleration (Phys.
Unit/s2)
0xC

Deceleration in closed-loop operation
For details, see "Generation of Dynamics Profile" (p. 22).

Reference Travel
Direction
0x47

Default direction for the referencing move
0 = automatic detection
1 = negative direction
2 = positive direction

Closed-Loop Velocity
(Phys. Unit/s)
0x49

Velocity in closed-loop operation
For details, see "Generation of Dynamics Profile" (p. 22).

3 Product Description

C-863.12 Mercury Controller MS249E Version: 2.1.0 37

Parameters Description and Possible Values

Velocity For Reference
Moves (Phys. Unit/s)
0x50

Velocity for referencing move
Specifies the maximum velocity during a referencing move for the
second approach of the switch selected. For high repeatability
during referencing, the maximum of this value should be as large as
the value of parameter 0x49. If the value of parameter 0x50 is set to
0, referencing moves are not possible.

Distance Between Limit
And Hard Stop (Phys.
Unit)
0x63

Distance between the built-in limit switch and the hard stop
Determines the maximum stopping distance during referencing
moves. The actual velocities during a referencing move are
calculated on the basis of this value, the set deceleration (0xC) and
the set velocities (0x49 and 0x50).

Distance From Limit To
Start Of Ref. Search
(Phys. Unit)
0x78

Distance between limit switch and the starting position for motion
to the index pulse.

Distance For Reference
Search (Phys. Unit)
0x79

Maximum distance for motion to the index pulse

The parameters 0x78 and 0x79 are used for referencing moves when
the two following conditions are met:
 The referencing move is started with FRF.
 The Reference Signal Type parameter (0x70) has the value 2.
Sequence of the referencing move:
1. The axis moves to the negative limit switch.

2. The axis moves the distance specified by parameter 0x78 away
from the limit switch.

3. The axis moves to the index pulse and covers the maximum
distance specified by parameter 0x79.

 INFORMATION
  For maximum repeatability, the referencing move must always be done in the same way.

 INFORMATION
 The limit switches can be used for referencing moves only if the travel range is not limited by

soft limits (p. 31).

3 Product Description

38 Version: 2.1.0 MS249E C-863.12 Mercury Controller

 INFORMATION
 For referencing moves, you can also use the digital inputs of the C-863.12 as the source of the

reference signal, the negative limit switch signal or the positive limit switch signal. See "Using
Digital Input Signals as Switch Signals" (p. 89) for more information.

 INFORMATION
 If the absolute position of the axis is defined manually with the POS command, conflicts with

the settings for the soft limits can occur (parameter 0x15, query with TMX?, and 0x30, query
with TMN?).
 Set the absolute position of the axis manually only if referencing is not otherwise possible.

 INFORMATION
 If the current parameter settings of the C-863.12 are written to the nonvolatile memory in

PIMikroMove or by entering the WPA command, the axis will no longer be considered
"referenced" (the response to FRF? is 0).

4 Unpacking

C-863.12 Mercury Controller MS249E Version: 2.1.0 39

1. Unpack the C-863.12 with care.

2. Compare the contents with the scope of delivery according to the contract and the
delivery note.

3. Inspect the contents for signs of damage. If any parts are damaged or missing, contact
our customer service department immediately (p. 253).

4. Keep all packaging materials in case the product needs to be returned.

4 Unpacking

5 Installing 5 Installing

C-863.12 Mercury Controller MS249E Version: 2.1.0 41

5.1 Installing the PC Software

Communication between the C-863.12 and a PC is required to configure the C-863.12 and to
command motion using the GCS commands. Various PC software applications are available for
this purpose.

5.1.1 Doing Initial Installation

Accessories
 PC with Windows or Linux operating system and at least 30 MB free storage space

 Data storage device with PI Software Suite (included in the scope of delivery)

For information on the compatibility of the software with PC operating systems see the
C-990.CD1 Release News in the root directory of the data storage device.

Installing the PC software on Windows
1. Start the installation wizard by opening PISoftwareSuite.exe in the installation directory

(root directory of the data storage device).

The InstallShield Wizard window opens for installing the PI Software Suite.

2. Follow the instructions on the screen.

The PI Software Suite includes the following components:

− Drivers for use with NI LabVIEW software

− Dynamic program library for GCS

− PIMikroMove

− PC software for updating the firmware of the C-863.12

− PIUpdateFinder for updating the PI Software Suite

− USB driver

Installing the PC software on Linux
1. Unpack the tar archive from the /Linux directory of the data storage device to a

directory on your PC.

2. Open a terminal and go to the directory to which you have unpacked the tar archive.

3. Log in as a superuser (root privileges).

5 Installing

5 Installing

42 Version: 2.1.0 MS249E C-863.12 Mercury Controller

4. To start the installation, enter ./INSTALL
Pay attention to capitalization while entering the command.

5. Follow the instructions on the screen.

You can select individual components for installation.

5.1.2 Installing Updates
PI is constantly improving the PI Software Suite.

 Always install the latest version of PI Software Suite and the positioner database.

Requirements
 Active connection to the Internet

 If your PC uses a Windows operating system:

− You have downloaded the PIUpdateFinder manual (A000T0028) from the PI
website. The link is in the "A000T0081-Downloading Manuals from PI.pdf" file in the
\Manuals folder on the data storage device with the PI Software Suite.

Updating the PC software and PISTAGES3.DB in Windows
 Use the PIUpdateFinder:

− Follow the instructions in the manual for the PIUpdateFinder (A000T0028).

Updating the PC software on Linux
1. Open the website https://www.physikinstrumente.com/en/products/software-suite

(https://www.physikinstrumente.com/en/products/software-suite).

2. Scroll down to Downloads.

3. For PI Software Suite C-990.CD1: Select ADD TO LIST+

4. Select REQUEST

5. Fill out the download request form and send the request.

The download link will be sent to the email address entered in the form.

6. Unpack the archive file on your PC to a separate installation directory.

7. In the directory with the unpacked files, go to the linux subdirectory.

8. Unpack the archive file in the linux directory by entering the command tar -xvpf <name
of the archive file> on the console.

9. Log into the PC as superuser (root privileges).

10. Install the update.

 INFORMATION
 If software is missing in the Downloads area or problems occur with downloading:

 Contact PI's customer service (p. 253).

https://www.physikinstrumente.com/en/products/software-suite

5 Installing 5 Installing

C-863.12 Mercury Controller MS249E Version: 2.1.0 43

Updating PISTAGES3.DB in Linux
1. Contact the customer service department (p. 253) to get the latest version of the

PISTAGES3.DB positioner database.

2. Log into the PC as superuser (root privileges).

3. Install the update that you received from our customer service department on your PC.

5.1.3 Installing Custom Positioner Databases
PI provides a data carrier with a custom positioner that has the following contents:

 Program Import PI CustomStage

 Custom positioner database with the parameter set for the positioner

In order for the parameter set to be selected in the PC software, it must first be inserted into
the PIStages3 positioner database by the Import PI Custom Stage program.

 Install the custom positioner database by double-clicking the file
Import_PI_CustomStage.exe in the root directory of the data carrier.

The parameter set from the custom positioner database is inserted into PIStages3.

If a message appears that installation of the custom positioner database failed:

a) Update the PIStages3 database on your PC, see "Installing Updates" (p. 42).

b) Repeat the installation of the custom positioner database.

5 Installing

44 Version: 2.1.0 MS249E C-863.12 Mercury Controller

5.2 Mounting the C-863.12

The C-863.12 can be used as benchtop device or mounted in any orientation on a surface.

The C-863.12 is stackable and can be installed in a control cabinet.

Figure 10: C-863.12, dimensions in mm

Tools and accessories
 Suitable screws

 Suitable screwdriver

5 Installing 5 Installing

C-863.12 Mercury Controller MS249E Version: 2.1.0 45

Mounting the C-863.12 onto a surface
1. Make the necessary holes in the surface.

The arrangement of the recesses in the mounting rails of the C-863.12 can be found in
the figure above.

2. Use two screws on each side to affix the C-863.12 to the recesses in the mounting rails.

5.3 Grounding the C-863.12

The C-863.12 is not grounded via the power supply connection.

If a potential equalization is required:

 Connect the screw on the rear panel of the C-863.12's housing marked with the
protective earth symbol (see figure) to the grounding system.

5.4 Connecting the Positioner

 NOTICE

Damage if a wrong motor is connected!
Connecting a Positioner with stepper motor to a DC motor controller can cause irreparable
damage.
 Only connect a Positioner with DC motor or PWM motor driver to the C-863.12.

 INFORMATION
 The C-863.12 supports both positioners with PWM amplifier and positioners without PWM

amplifier. Separate lines on the Motor socket (p. 259) are available for both positioner
variants. Makes sure that suitable lines are selected via the connector of the positioner.

 INFORMATION
 When the positioner, cable, and C-863.12 are marked as a system:

 Contact our customer service department (p. 253) before exchanging system components.

Requirements
 The C-863.12 is switched off, i.e., the power adapter is not connected to the power

socket with the power cord.

5 Installing

46 Version: 2.1.0 MS249E C-863.12 Mercury Controller

 You have read and understood the user manual for the positioner.

Tools and accessories
 Positioner with DC motor and encoder with A/B quadrature signal transmission

 Suitable cable from the scope of delivery of the positioner

Connecting the positioner
1. Connect the positioner to the C-863.12's Motor socket.

2. Use the integrated screws to secure the connections against accidental disconnection.

5.5 Connecting the PC

Communication between the C-863.12 and a PC is required to configure the C-863.12 and to
command motion using the GCS commands. The C-863.12 has the following interfaces for this
purpose:

 RS-232 interface

 USB interface

In this section, you learn how to establish proper cable connections between the C-863.12 and
a PC and in a daisy chain network. The steps for establishing communication between C-863.12
and PC are described in the section "Startup":

 "Establishing Communication via RS-232" (p. 57)

 "Establishing Communication via USB" (p. 58)

 "Establishing Communication for Networked Controllers" (p. 59)

 INFORMATION
 Using a daisy chain network, up to 16 controllers can be connected to the PC via a single RS-

232 or USB connection.

5.5.1 Connecting to the RS-232 Interface

 NOTICE

Incorrect wiring!
Connecting the USB and RS-232 interfaces of the controller to the PC at the same time can
damage the PC or the controller.

 Connect either the USB or the RS-232 interface to the PC.

5 Installing 5 Installing

C-863.12 Mercury Controller MS249E Version: 2.1.0 47

Requirements
 The PC has a free RS-232 interface (also called a "serial interface" or "COM port", e.g.,

COM1 or COM2).

Tools and accessories
 RS-232 null-modem cable (C-815.34 included in the scope of delivery)

Connecting the C-863.12 to the PC
 Connect the RS-232 In socket on the front panel of the C-863.12 and the RS-232

interface of the PC (a D-sub 9(m) panel plug) to the null-modem cable.

5.5.2 Connecting to the USB Interface

 NOTICE

Incorrect wiring!
Connecting the USB and RS-232 interfaces of the controller to the PC at the same time can
damage the PC or the controller.

 Connect either the USB or the RS-232 interface to the PC.

Requirements
 The PC has a free USB interface.

Tools and accessories
 USB cable (type A to mini-B) for connection to the PC, in the scope of delivery (p. 9)

Connecting the C-863.12 to the PC
 Connect the USB socket of the C-863.12 and the USB interface of the PC with the USB

cable.

5.5.3 Building a Daisy Chain Network

 INFORMATION
 Networking in a daisy chain is done in series. See also "Definition of Terms" (p. 2). The first

controller is connected directly to the PC.

 INFORMATION
 The DIP switches of the C-863.12 must be set accordingly:

 Set a unique address for each controller in a daisy chain network. One of the controllers
must have the address 1. This controller does not have to be the one directly connected to
the PC. See "Controller Address" (p. 54) for details.

5 Installing

48 Version: 2.1.0 MS249E C-863.12 Mercury Controller

 Set the same baud rate for every controller in a daisy chain network. See "Baud Rate" (p.
55) for details.

Tools and accessories
 A network cable for every controller to be connected to the network. Currently

available:

− C-862.CN, 30 cm, included in the scope of delivery

− C-862.CN2, 180 cm, available as an optional accessory (p. 10)

Networking the controllers
 Set up the controller chain. For this purpose, always connect the RS-232 Out connection

of the previous controller to the RS-232 In connection of the subsequent controller via
the network cable.

 Connect the first controller of the chain to the PC.

− Use the RS-232 interface (p. 46).

or

− Use the USB interface (p. 47).

 INFORMATION
 A C-863.12 can be operated in a common daisy chain network with the following controllers:

 C-863.11, C-663.11, C-663.12 Mercury controllers
 PILine® Motion Controller from the C-867 and C-877 series
 PiezoWalk® NEXACT® controller E-861

5.6 Connecting the Power Adapter to the C-863.12

 INFORMATION
 If the positioner is equipped with a PWM amplifier that is supplied via a separate power

adapter:
 To achieve the optimum motor performance, use a power adapter for the C-863.12 that

supplies the same output voltage as the power adapter for the PWM amplifier.

Requirements
 The power cord is not connected to the power socket.

Tools and accessories
 Wide input range power supply (p. 9) included, for line voltages between 100 and 240

volts alternating voltage at 50 or 60 Hz

5 Installing 5 Installing

C-863.12 Mercury Controller MS249E Version: 2.1.0 49

 Alternative: Sufficiently rated power adapter

 Power cord supplied

 Alternative: Sufficiently sized power cord

Connecting the power adapter to the C-863.12
 Connect the 4-pin connector of the power adapter to the 48 V 2 A socket of the C-

863.12.

− Make sure that the connector is locked in the socket.

 Connect the power cord to the power adapter.

5.7 Connecting an Analog Joystick

 INFORMATION
 You can connect an axis and a button of an analog joystick to the Joystick socket:

 Pin 4: Axis 1 of joystick 1
 Pin 6: Button 1 of joystick 1
You can use joystick axis to control the velocity of the positioner connected to the C-863.12.

 INFORMATION
 The C-819.20 and C-819.30 joysticks, available as optional accessories, use pins 4 and 6 of the

Joystick socket. Pin 3 of this socket is used as power supply of the joystick.
You can use a C-819.20Y Y cable to connect two C-863.12 to a C-819.20 joystick. In this case,
power is supplied to the joystick by the C-863.12, which is connected to the X branch of the
cable.

Tools and accessories
 Analog joystick from PI for operation with 0 to 3.3 V, available as an optional accessory

(p. 10):

− C-819.20 analog joystick for 2 axes

− If a C-819.20 joystick is to be connected to two controllers: C-819.20Y Y cable

or

− C-819.30 analog joystick for 3 axes

Connecting an analog joystick
 Connect the joystick to the Joystick socket of the C-863.12:

− If you want to operate a C-819.20 joystick with this controller only, connect it
directly to the controller.

5 Installing

50 Version: 2.1.0 MS249E C-863.12 Mercury Controller

− If you want to operate a C-819.20 joystick with two controllers (i.e., two axes),
connect the joystick to the C-819.20Y Y cable and connect both controllers to the X
and Y branches of the cable. The power is supplied to the joystick via the X branch.
For this reason, the X branch has to be connected to a controller even if joystick
control is not to be activated for this controller.

− If you want to connect an axis of a C-819.30 joystick, connect the corresponding
cable of the joystick to the controller.

5.8 Connecting Digital Inputs and Outputs

The digital inputs and outputs on the I/O socket of the C-863.12 can be used as follows:

 Outputs: Triggering of external devices; see "Digital Output Signals" (p. 78).

 Inputs: Use in macros (p. 88) and/or as source for the reference and limit switch signals
of the axis (p. 89)

5.8.1 Connecting the Digital Outputs

 INFORMATION
 Digital output signals are available on pins 5, 6, 7 and 8 of the I/O socket.

 INFORMATION
 If the C-170.PB pushbutton box from PI is connected to the I/O socket, it displays via LEDs the

state of the digital output lines.

Tools and accessories
 Suitable cable, e. g. C-170.IO IO cable with open end, available as an optional accessory

(p. 10)

 Device to be triggered having digital input for TTL signals

Connecting a device to be triggered
 Connect an appropriate device to one of pins 5, 6, 7, and 8 of the I/O socket of the C-

863.12.

5.8.2 Connecting the Digital Inputs

 INFORMATION
 Digital input signals can be fed via pins 1, 2, 3, and 4 of the I/O socket into the C-863.12.

5 Installing 5 Installing

C-863.12 Mercury Controller MS249E Version: 2.1.0 51

 INFORMATION
 The digital inputs (pins 1 to 4) on the I/O socket can also be used as analog inputs.

 Digital: TTL
 Analog: 0 to +5 V

Tools and accessories
 Suitable signal source:

− If the digital inputs are to be used in macros, the C-170.PB pushbutton box, for
example, can be connected, available as an optional accessory (p. 10).

− If the digital inputs are to be used as the source for the reference and limit switch
signals of the axis, the signal level may only change once across the entire travel
range.

 If necessary: Suitable cable, e. g. C-170.IO IO cable with open end, available as an
optional accessory (p. 10).

Connecting a digital signal source
 Connect an appropriate signal source to one of pins 1, 2, 3, or 4 of the I/O socket of the

C-863.12.

5.9 Connecting Analog Signal Sources

The analog inputs on the I/O socket of the C-863.12 can be used as follows:

 Use in macros (p. 91): Details and examples of macros are found in "Controller Macros"
(p. 99).

 Scanning applications with PIMikroMove (see PIMikroMove manual)

 INFORMATION
 Analog input signals can be fed via pins 1, 2, 3, and 4 of the I/O socket into the C-863.12.

 INFORMATION
 The analog inputs (pins 1 to 4) on the I/O socket can also be used as digital inputs.

 Analog: 0 to +5 V
 Digital: TTL

Tools and accessories
 Suitable signal source

5 Installing

52 Version: 2.1.0 MS249E C-863.12 Mercury Controller

 If necessary: Suitable cable, e. g. C-170.IO IO cable with open end, available as an
optional accessory (p. 10).

Connecting an analog signal source
 Connect an appropriate signal source to one of pins 1, 2, 3 or 4 of the I/O socket of the

C-863.12.

6 Startup

C-863.12 Mercury Controller MS249E Version: 2.1.0 53

6.1 General Notes on Startup

 NOTICE

Damage due to disabled limit switch evaluation!
The collision of a moving part at the end of the travel range, or with an obstacle, as well as high
acceleration, can cause damage to or considerable wear on the mechanics.

 Avoid motion in open-loop operation.
 If motion in open-loop operation is necessary:

− Set the control value with the SMO command so that the axis moves with low velocity.
− Stop the axis in time. For this purpose, use the #24, STP or HLT command, or set the

control value to zero with the SMO command.
 Do not disable the evaluation of the limit switches by the C-863.12 via parameter setting.
 Check the function of the limit switches at about 10 % to 20 % of the maximum velocity.
 In the event of a malfunction of the limit switches, stop the motion immediately.

6.2 Adapting the DIP Switch Settings

6.2.1 General Procedure

 INFORMATION
 Changed DIP switch settings become effective after the C-863.12 is switched on.

 If you have changed the DIP switch settings while the C-863.12 was switched on, switch the
C-863.12 off and back on again to activate the new settings.

Figure 11: DIP switches: switch up = ON; switch down = OFF

6 Startup

6 Startup

54 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Switch Function

1 to 4 Controller address (p. 54)

5 and 6 Baud rate (p. 55)

7 and 8 Without function

Requirements
 The C-863.12 is switched off, i.e., the power supply is not connected to the power

socket with the power cord.

Adapting the DIP switch settings
 Put the individual DIP switches in the correct position for your application. Details are

specified in the following tables.

6.2.2 Controller Address
Address* S1 S2 S3 S4

1 ON ON ON ON

2 ON ON ON OFF

3 ON ON OFF ON

4 ON ON OFF OFF

5 ON OFF ON ON

6 ON OFF ON OFF

7 ON OFF OFF ON

8 ON OFF OFF OFF

9 OFF ON ON ON

10 OFF ON ON OFF

11 OFF ON OFF ON

12 OFF ON OFF OFF

13 OFF OFF ON ON

14 OFF OFF ON OFF

15 OFF OFF OFF ON

16 OFF OFF OFF OFF

*Factory settings are shown in bold.

6 Startup

C-863.12 Mercury Controller MS249E Version: 2.1.0 55

 INFORMATION
 A unique address must be set for each controller in a daisy chain network. One of the

controllers must have the address 1. This controller does not have to be the one directly
connected to the PC.

 INFORMATION
 A non-networked controller must have address 1, if it

 is to be used in PIMikroMove.
 is to be used in drivers for NI LabVIEW software.
 is to be addressed with PITerminal without specifying the target address; in this case, the

target and sender address (p. 119) are also not specified in the responses from the C-
863.12.

6.2.3 Baud Rate
Baud rate* S5 S6

9600 ON ON

19200 ON OFF

38400 OFF ON

115200 OFF OFF

*Factory settings are shown in bold.

 INFORMATION
 The same baud rate must be set for all controllers in a daisy chain network.

6.3 Switching the C-863.12 On

 INFORMATION
 The C-863.12 is intended for closed-loop operation with incremental position sensors (servo

mode On). After switch-on, open-loop operation is active by default (servo mode Off).
 Query the current operating mode with the SVO?, #4 or SRG? commands.
 Activate closed-loop operation with the SVO command.
 If necessary, program a startup macro that starts the C-863.12 via the SVO command in

closed-loop operation; see "Setting up a startup macro" (p. 107).
 Avoid motion in open-loop operation.

6 Startup

56 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Requirements
 You have read and understood the General Notes on Startup (p. 53).

 The C-863.12 has been installed properly (p. 41).

 You have set the DIP switches on the C-863.12 in accordance with your application (p.
53).

Switching on the C-863.12
 Plug the power cord of the power adapter into the power socket.

The C-863.12 loads the parameter values from the nonvolatile memory into the volatile
memory.

The STA LED on the front panel of the C-863.12 displays the state of the C-863.12:

− Lights up continuously: C-863.12 is ready for normal operation

− Flashing: C-863.12 is in firmware update mode

− Off: C-863.12 is not connected to the power supply or could be defective

 If the C-863.12 is in firmware update mode, update the firmware (p. 245).

 If the C-863.12 is properly connected to the power adapter (p. 48) and the STA LED
does not light up after switching on, contact our customer service department (p. 253).

6.4 Establishing Communication

 INFORMATION
 A USB UART module (FTDI) is used for the USB interface in the C-863.12. Therefore, if the C-

863.12 is connected via USB and switched on, the USB interface is also shown as COM port in
the PC software. The C-863.12 uses a baud rate of 115200 for this interface.

 INFORMATION
 Use the USB Daisy Chain and RS-232 Daisy Chain tabs in the PC software for establishing

communication only if you have actually connected a daisy chain network to the PC.

 INFORMATION
 A non-networked controller must have the address 1, if it is to be used in PIMikroMove. See

"Controller Address" (p. 54) for details.

The procedure for PIMikroMove is described in the following.

For information on establishing the communication on Linux systems see the Technical Note "PI
Software on ARM-Based Platforms", A000T0089 (p. 3).

6 Startup

C-863.12 Mercury Controller MS249E Version: 2.1.0 57

6.4.1 Establishing Communication via RS-232

Requirements
 You have read and understood the General Notes on Startup (p. 53).

 The C-863.12 is connected to the RS-232 interface of the PC (p. 46).

 You have made the following settings with the respective DIP switches prior to
switching on the C-863.12 (p. 53):

− controller address = 1

− appropriate baud rate

 The C-863.12 is switched on (p. 55).

 The PC is switched on.

 The required software is installed on the PC (p. 41).

 You have read and understood the manual for the PC software. The links to the
software manuals are in the A000T0081 file on the PI software data storage medium.

Establishing communication
1. Start PIMikroMove.

The Start up controller window opens with the Connect controller step.

− If the Start up controller window does not open automatically, select the
Connections > New... menu item in the main window.

Figure 12: Start up controller – Connect controller

2. Select C-863 in the controller selection field.

3. Select the RS-232 tab on the right-hand side of the window.

6 Startup

58 Version: 2.1.0 MS249E C-863.12 Mercury Controller

4. In the COM Port field, select the COM port of the PC to which you have connected the
C-863.12.

5. In the Baudrate field, set the value which is set with DIP switches 5 and 6 of the C-
863.12.

This adapts the baud rate of the PC to the baud rate of the C-863.12.

6. Click Connect to establish communication.

If communication was established successfully, PIMikroMove guides you through the
configuration of the C-863.12 for the connected positioner; see "Starting Motion" (p. 64).

6.4.2 Establishing Communication via USB

 INFORMATION
 If the controller is connected via the USB connection and switched on, the USB interface in the

PC software is also shown as a COM port.

Requirements
 You have read and understood the General Notes on Startup (p. 53).

 The C-863.12 is connected to the USB interface of the PC.

 Prior to switching on the C-863.12 you set the DIP switches for the controller address to
address 1 (p. 53).

 The C-863.12 is switched on (p. 55).

 The PC is switched on.

 The required software and USB drivers are installed on the PC.

 You have read and understood the manual for the PC software. The links to the
software manuals are in the A000T0081 file on the PI software data storage medium.

Establishing communication
1. Start PIMikroMove.

The Start up controller window opens with the Connect controller step.

6 Startup

C-863.12 Mercury Controller MS249E Version: 2.1.0 59

− If the Start up controller window does not open automatically, select the
Connections > New... menu item in the main window.

Figure 13: Start up controller – Connect controller

2. Select C-863 in the controller selection field.

3. Select the USB tab on the right-hand side of the window.

4. Select the connected C-863.12 in the USB tab.

5. Click Connect to establish communication.

If communication was established successfully, PIMikroMove guides you through the
configuration of the C-863.12 for the connected positioner; see "Starting Motion" (p. 64).

 If communication could not be established, look for a solution to the problem in
"Troubleshooting" (p. 249).

6.4.3 Establishing Communication for Networked Controllers
The following describes the procedure for PIMikroMove and for PITerminal.

 INFORMATION
 If you are establishing communication with a networked controller via PITerminal, the address

of the controller to be addressed is required in every command line. See "Target and Sender
Address" (p. 119) for details.
 Use PITerminal to test communication with networked controllers.

 INFORMATION
 The RS-232 output lines of some PCs are not adapted for the maximum number of 16

controllers in a network. If you have connected a daisy chain network to such a PC via the RS-
232 interface, communication malfunctions may occur (e.g., timeout). In case of
communication malfunctions:

6 Startup

60 Version: 2.1.0 MS249E C-863.12 Mercury Controller

1. Disconnect the null-modem cable from the RS-232 In socket of the controller which is
connected to the PC.

2. Connect the daisy chain network to the PC via the USB interface of this controller.

Requirements
 You have read and understood the General Notes on Startup (p. 53).

 You have set up a daisy chain network .

 You have assigned (p. 54)a unique address to each of the networked controllers.

 You have set (p. 55) the same baud rate for all controllers.

 All controllers in the daisy chain network are switched on (p. 55).

 The PC is switched on.

 The required software is installed on the PC (p. 41).

 If you have connected the first controller in the chain to the PC via the USB interface:
The USB drivers are installed on the PC (p. 41).

 You have read and understood the manual for the PC software. The links to the
software manuals are in the A000T0081 file on the PI software data storage medium.

Establishing communication with PIMikroMove
1. Start PIMikroMove.

The Start up controller window opens with the Connect controller step.

− If the Start up controller window does not automatically open, select the
Connections > New... menu item in the main window.

2. Select the appropriate controller type in the field for controller selection.

6 Startup

C-863.12 Mercury Controller MS249E Version: 2.1.0 61

In the example in the following figures, there is a daisy chain network from a C-863.12
with the controller address 1 and a C-663.12 with the controller address 2. If you want
to connect the C-863.12 first, select C-863.

3. Select the appropriate tab on the right-hand side of the window:

− If you have connected the first controller in the chain to the PC via the RS-232
interface, select the RS-232 Daisy Chain tab.

− If you have connected the first controller in the chain to the PC via the USB
interfaces, select the USB Daisy Chain tab.

4. Make the settings for the interface in the tab selected:

− RS-232 Daisy Chain tab:

 Select the COM port of the PC in the COM Port field which you connected to
the first controller in the chain.

 Set the value in the Baudrate field that is set for all controllers in the chain.

− USB Daisy Chain tab:

 Select the controller in the upper part of the tab connected to the PC.

6 Startup

62 Version: 2.1.0 MS249E C-863.12 Mercury Controller

5. Click the Scan button in the bottom section of the tab to list every controller in the
daisy chain network.

6. Select a controller from the list. The selection must match the controller type that you

selected in step 2.

7. Click Connect to establish communication with the controller selected.

When communication has been successfully established, PIMikroMove guides you
through the configuration of the C-863.12 for the connected positioner.

− Proceed further as described in "Starting Motion" (p. 64).

8. If you want to connect an additional controller of the daisy chain network, select the
Connections > New... menu item in the main window.

9. Do steps 2, 6, and 7 once again in the specified order.

In the following figure, the C-663 is to be connected as well.

6 Startup

C-863.12 Mercury Controller MS249E Version: 2.1.0 63

10. Repeat steps 8, 2, 6 and 7 for every additional controller of the daisy chain network,
which you want to connect.

If you want to terminate communication with one of the controllers of the daisy chain network:

 Select the Connections > Close menu item for the corresponding controller in the main
window.

Establishing communication with PITerminal

 INFORMATION
 Via the Mercury button PITerminal supports controllers with older firmware versions that are

not compatible with GCS.
 Make sure that the Mercury button is not activated in PITerminal.

1. Start PITerminal.

2. Click on Connect….

The Connect window opens.

3. Select the RS-232 or USB tab in the Connect window according to the interface you
used to connect the first controller in the chain to the PC.

4. Make the settings for the interface in the selected tab:

− RS-232 tab:

 Select the COM port of the PC connected to the C-863.12 in the COM Port field.

 Set the value of the C-863.12 in the Baudrate field with DIP switches 5 and 6.

− USB tab:

 Select the C-863.12 connected.

5. Click OK to establish communication.

6. Send the *IDN? command for every controller in the daisy chain network to check the
communication.

6 Startup

64 Version: 2.1.0 MS249E C-863.12 Mercury Controller

In the example in the following figure, the daisy chain network comprises a C-863.12
with the controller address 1 and a C-663.12 with the controller address 2. Send:

− *IDN? to query the device identification string of the controller with the address
1; the controller address is not required (because = 1)

− 2 *IDN? to query the device identification string of the controller with the
address 2.

For further information, see "Target and Sender Address" (p. 119).

6.5 Starting Motion

PIMikroMove is used in the following to move the positioner. The program guides you through
the following steps so that you do not have to deal with the respective GCS commands:

 Adapting the parameter settings of the C-863.12 to the connected positioner by loading
a parameter set from a positioner database

 Switching on the servo mode (closed-loop operation)

 Doing a referencing move; details see "Referencing" (p. 34).

 NOTICE

Selecting an incorrect positioner type
Selecting an incorrect positioner type in the PC software can damage the positioner.
 Make sure that the type of positioner selected in the PC software matches the positioner

that is connected.

6 Startup

C-863.12 Mercury Controller MS249E Version: 2.1.0 65

 NOTICE

Oscillation!
Unsuitable setting of the C-863.12's servo control parameters can cause the positioner to
oscillate. Oscillation can damage the positioner and/or the load fixed to it.
 Secure the positioner and all loads adequately.
 If the connected positioner is oscillating (unusual operating noise), immediately switch off

the servo mode or disconnect the C-863.12 from the power source.
 Only switch on the servo mode after you have modified the servo control parameter

settings of the C-863.12; see "Optimizing Servo Control Parameters" (p. 68).
 If, due to a very high load, oscillation occurs during the referencing move, follow the

instructions for the referencing move in "Troubleshooting" (p. 249).

 INFORMATION
 The C-863.12 has a nonvolatile memory for parameter values. Therefore, after switching on,

the correct parameter settings for the connected positioner may already be loaded.
 However, if you have loaded a parameter set from the positioner database and

overwritten the original settings of the C-863.12 in the volatile memory during the process,
avoid saving the new settings in the nonvolatile memory of the C-863.12. The original
settings are active again after the C-863.12 has been switched off and on again or been
rebooted.

 If you are using the Start up controller window in PIMikroMove for selecting the positioner
and you are asked how you want to save the new settings, click the Save all settings
permanently on controller button only if you are sure that the C-863.12 is working
correctly with the settings.

 INFORMATION
 If the Select connected stages step is not displayed in PIMikroMove, the controller has

probably already loaded the correct parameter settings for the positioner type connected.
1. Check Start up axes step to ensure that the correct positioner type is in the Stage column

in the middle of the window.

2. If the positioner type is not correct, click Select connected stages in the left area of the
Start up controller window to change the positioner type.

Requirements
 You have read and understood the General Notes on Startup (p. 53).

 PIMikroMove is installed on the PC (p. 41).

 You have read and understood the PIMikroMove manual. The links to the software
manuals are in the file A000T0081 on the data storage device with the PI software.

 You have installed the latest version of the PISTAGES3.DB database onto your PC (p.
41).

6 Startup

66 Version: 2.1.0 MS249E C-863.12 Mercury Controller

 If PI provided a custom positioner database for your positioner, the dataset was
imported into PIStages3 (p. 43).

 You have installed the positioner in the same way as it will be used in your application
(corresponding load, orientation, and mounting).

 You have connected the C-863.12 to the positioner (p. 46).

 You have established communication with PIMikroMove between the C-863.12 and the
PC (p. 56).

Starting motion with PIMikroMove
1. If in PIMikroMove the Select connected stages step is displayed, select the positioner

type of the positioner connected:

If the correct positioner type is already listed in the Current stage type column in the
Controller axes list on the right of the window:

− Click OK.

If the listed positioner type is not correct:

a) Mark the positioner type in the Stage database entries list.

b) Click Assign.

c) Confirm the selection with OK.

Figure 14: Start up controller – Select connected stages

2. Specify how you want to load the parameter settings into the C-863.12 in the Save all
changes permanently? dialog box:

− Temporary load: Click Keep the changes temporarily to load the parameter settings
into the volatile memory of the C-863.12. The settings are lost when the C-863.12 is
switched off or rebooted.

6 Startup

C-863.12 Mercury Controller MS249E Version: 2.1.0 67

− Load as default values: Click Save all settings permanently on controller to load the
parameter settings into the nonvolatile memory of the C-863.12. The settings are
available immediately after switching on or rebooting the C-863.12 and do not need
to be reloaded.

The Start up controller window changes to the Start up axes step.

3. In the Start up axes step, perform the referencing move for the axis so that the
controller knows the absolute axis position:

− If you want to start the referencing move to the reference switch, click Ref. switch.

− If you want to start the referencing move to the negative limit switch, click Neg.
limit.

− If you want to start the referencing move to the positive limit switch, click Pos.
limit.

If a warning message appears indicating that servo mode is switched off:

− Switch on the servo mode by clicking on the Switch on servo button (closed-loop
operation).

The axis performs the referencing move.

Figure 15: Start up controller – Start up axes

4. After a successful referencing move, close the Start up controller window by clicking OK
> Close.

The main window of PIMikroMove opens.

5. Test the motion of the axis several times.

6 Startup

68 Version: 2.1.0 MS249E C-863.12 Mercury Controller

By clicking the corresponding arrow keys for the axis in the main window of
PIMikroMove for example, it is possible to initiate motion over a particular distance
(specification in Step size column) or to the limits of the travel range.

[1] Arrow keys for motion; main window of

PIMikroMove

6.6 Optimizing the Servo Control Parameters

Adjusting the PID controller optimizes the dynamic properties of the system (overshoot and
settling time). The optimum P-I-D controller settings depend on your application and your
requirements.

As a rule, optimization occurs empirically and involves the following parameters. For details, see
"Servo Algorithm and Other Control Value Corrections" (p. 26):

 P Term (0x411)

 I Term (0x412)

 D Term (0x413)

 I-Limit (0x414)

Various values are used in closed-loop operation and the behavior of the positioner is
monitored.

PIMikroMove is used in the following for optimizing the servo control parameters.

Requirement
 You have installed the positioner in the same way as it will be used in your application

(corresponding load, orientation, and mounting).

 You have started initial motion (p. 64) with PIMikroMove.

 All devices are still ready for operation.

6 Startup

C-863.12 Mercury Controller MS249E Version: 2.1.0 69

Checking the servo control parameters: Record the step response
With the recording of the step response, you determine the settling behavior of the positioner
in closed-loop operation.

1. Open the Data Recorder window in the main window of PIMikroMove via the C-863.12
> Show data recorder menu item.

2. With the Servo checkbox, make sure that the servo mode is switched on.

− If the Servo checkbox is not checked, the servo mode is switched off. Click the
checkbox to switch on the servo mode.

3. Configure the data recorder.

a) Set the size of the step to be made to a value that is typical for your application,
e.g., 0.100000 (specified in physical units).

b) Set the value 10 for the record table rate in the Record Rate - # cycles field.

c) Set the value 1024 (or less) for the number of data points to be read for the graphic
display in the field # of data points.

d) Click the Configure… button and make sure that "Commanded Position of Axis" and

"Actual Position of Axis" are selected in the Configure Data Recorder window as the
variables to be recorded. Close the window with OK.

6 Startup

70 Version: 2.1.0 MS249E C-863.12 Mercury Controller

4. Start the jump in the positive direction as well as the recording by clicking the button
in the Data Recorder window.

The axis performs the step and the step response is recorded and displayed graphically.

5. Check the displayed step response (see examples below).

− If necessary, enlarge the view by clicking the button and, while pressing the left
mouse button, dragging the mouse pointer, which has turned into a magnifying
glass, over a section of the graphic display (clicking the right mouse button in the
graphics field reduces the view back to the original size).

Examples for step responses:

Figure 16: Step-and-settle too slow

Figure 17: Oscillation

6 Startup

C-863.12 Mercury Controller MS249E Version: 2.1.0 71

Figure 18: Strong overshooting

Figure 19: Optimal settling behavior (commanded and actual position congruent)

If the result is satisfactory (i.e., minimum overshoot, settling time not too long):

− You already have optimum parameter settings and do not have to do anything
further.

If the result is not satisfactory:

− Optimize the servo control parameters, see below.

6 Startup

72 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Optimizing the servo control parameters
1. Open the expanded single axis window for the connected positioner in the main

window of PIMikroMove by clicking the right mouse button on the corresponding line
of the Axes tab and selecting Show Expanded Single Axis Window in the context menu.

2. Enter new values for the parameters to be adapted:

a) If the parameters to be changed are not included in the list on the right-hand side
of the window, click Configure View -> C-863 - CONTROL ALGORITHM.

b) Type the new parameter value into the corresponding input field in the Active
Value column of the list.

c) Press the Enter key on the PC keyboard or click outside the input field with the
mouse to transfer the parameter value to the volatile memory of the controller.
Note: If a parameter value in the volatile memory (Active Value column) is different
to the parameter value in the nonvolatile memory (Startup Value column), the line
in the list is highlighted in color.

3. In the Data Recorder window, record the step response of the positioner again.

If the result is not satisfactory:

− Enter different values for the servo control parameters into the expanded single
axis window and record the step response again.

If you are satisfied with the result and want to keep the new servo control parameter
settings, save the new settings. You have the following options:

6 Startup

C-863.12 Mercury Controller MS249E Version: 2.1.0 73

− Save a parameter set in the positioner database on the PC by clicking on Load and
Save Parameters -> Save parameters to stage database... in the expanded single
axis window, see "Creating or Changing a Positioner Type" (p. 232).

− Transfer the current values of the listed parameters from the volatile memory to
the nonvolatile memory of the C-863.12 by clicking Load and Save Parameters ->
Save all currently active axis parameters as startup parameters to controller in the
expanded single axis window.

7 Operation

C-863.12 Mercury Controller MS249E Version: 2.1.0 75

7.1 Motion Errors

7.1.1 Behavior with Motion Errors
Motion errors can be caused for example, by malfunctions of the drive or the position sensor of
the positioner.

A motion error occurs, when the position error (i.e., the absolute value of the difference
between the current position and the commanded position) exceeds the specified maximum
value in closed-loop operation. The range in which the deviation may lie is specified by the
Maximum Position Error (Phys. Unit) parameter (ID 0x8).

If motion error occurs, the C-863.12 reacts as follows to protect the system against damage:

 The servo mode is switched off for the axis in question.

 If applicable, the brake is activated for the axis in question.

 All motion is stopped.

 Error code -1024 is set.

Figure 20: Behavior in case of motion errors

7 Operation

7 Operation

76 Version: 2.1.0 MS249E C-863.12 Mercury Controller

7.1.2 Re-establishing Readiness for Operation

 NOTICE

Unintentional motion after brake deactivated!
If servo mode is switched off, e.g., after a motion error occurs, the brake of the positioner can
be deactivated by command. Deactivating the brake can cause the positioner to move
unintentionally.
 Secure the positioner against moving unintentionally before you deactivate the brake by

command!

Re-establishing readiness for operation
1. Send the ERR? command to read out the error code.

If there is a motion error, error code -1024 is output. ERR? resets the error code to
zero during the query.

2. Check your system and make sure that all axes can be moved safely.

3. Switch on the servo mode for the axis in question with the SVO command (p. 191).

When switching on the servo mode, the target position is set to the current axis
position and the brake is deactivated, if necessary. Now the axis can move again and
you can command a new target position.

 INFORMATION
 With the CTO (p. 137) and TRO (p. 195) commands, you can program the digital output lines

of the C-863.12 so that they are activated in the case of motion errors. The programmed
output lines remain activated until the error code is reset to 0. Refer to "Configuring the
"Motion Error" Trigger Mode" (p. 82) for details.

7 Operation

C-863.12 Mercury Controller MS249E Version: 2.1.0 77

7.2 Data Recorder

7.2.1 Configuring the Data Recorder
The C-863.12 contains a real-time data recorder. The data recorder can record for example, the
current position of the axis.

The recorded data is stored temporarily in 4 data recorder tables with 1024 points each. Each
data recorder table contains the data of one data source.

You can configure the data recorder for example, by defining the data type to be recorded and
the data sources, and by specifying how the recording is to be started.

 INFORMATION
 The settings for configuring the data recorder can only be changed in the volatile memory of

the C-863.12. After switching on or rebooting the C-863.12, the factory settings are active,
unless a configuration has already been made using a startup macro.

Reading general information from the data recorder
 Send the HDR? command (p. 157).

The options available for recording and triggering are displayed together with the
information on additional parameters and commands for data recording.

Configuring data to be recorded
You can assign the data sources and record options to the data recorder tables.

 Send the DRC? command (p. 147) to read out the current configuration. Data recorder
tables with the record option 0 are deactivated, i.e., nothing is recorded. By default, the
data recorder tables of the C-863.12 record the following:

− Data recorder table 1: Record option 1: Commanded position of the axis

− Data recorder table 2: Record option 2: Current position of the axis

− Data recorder table 3: Record option 3: Position error of the axis

− Data recorder table 4: Record option 73: Control value of the axis

 Configure the data recorder with the DRC command (p. 146).

Configuring the recording trigger
You can specify how the recording is to be triggered.

 Get the current trigger option with DRT? (p. 150)

 Change the trigger option with the DRT command (p. 149). The trigger option applies
to all data recorder tables whose record option is not set to 0.

7 Operation

78 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Setting the record table rate
 Send the RTR? command (p. 182) to read out the record table rate of the data

recorder.

The parameter indicates the number of servo cycles required for recording each data
point. The default value is 10 servo cycles. The servo cycle time of the C-863.12 is 50 µs.

 Change the record table rate with the RTR command (p. 182).

As the record table rate increases, the maximum duration of the data recording is
increased.

7.2.2 Starting the Recording
 Start the recording with the trigger option set with DRT.

Regardless of the trigger option set, the data recording is always triggered when a step
response measurement is started with STE (p. 190).

The data recording always takes place for all data recorder tables whose record option is not set
to 0. It ends when the data recorder tables are full.

7.2.3 Reading Recorded Data

 INFORMATION
 Reading the recorded data can take some time, depending on the number of data points.

The data can also be read while data is being recorded.

 Read out the last recorded data with the DRR? command (p. 148).

The data is output in the GCS array format (refer to the SM146E user manual).

 Query the number of points in the last recording with the DRL? command (p. 147).

7 Operation

C-863.12 Mercury Controller MS249E Version: 2.1.0 79

7.3 Digital Output Signals

The digital outputs of the C-863.12 are available at the I/O socket (p. 260).

 Get the number of the output lines available on the C-863.12 with the TIO? command
(p. 194).

External devices can be triggered via the digital outputs of the C-863.12. Potential applications:

 Linking the trigger output to the motion of the axis. Details and examples can be found
in this section.

 Direct switching of output lines, e. g., in macros. Details and examples of macros can be
found in "Controller Macros" (p. 99).

7.3.1 Commands for Digital Outputs
The following commands are available for the use of digital outputs:

Command Syntax Function
CTO CTO {<TrigOutID>

<CTOPam> <Value>}
Configures the conditions for the trigger output. Couples
the trigger output to the axis motion.

DIO DIO {<DIOID>
<OutputOn>}

Switches digital output lines directly to the low or high
state, either separately or all lines at once. Should not be
used for output lines where the trigger output is activated
by TRO.

TRO TRO {<TrigOutID>
<TrigMode>}

Activates or deactivates the trigger output conditions set
with CTO. Default: Trigger output deactivated.

One configuration setting can be made per CTO command:

CTO <TrigOutID> <CTOPam> <Value>

 <TrigOutID> is one digital output line of the controller.

 <CTOPam> is the CTO parameter ID in decimal format.

 <Value> is the value to which the CTO parameter is set.

The following trigger modes (<Value>) can be set for <CTOPam> = 3:

<Value> Trigger mode Short description

0
(default)

Position Distance Once the axis has moved a specified distance, a trigger pulse
is output (p. 80).
Optionally, start and stop values can be defined to limit
triggering to one position range and one particular direction
of motion (negative or positive).

2 On Target The on-target state of the axis selected is output at the
selected trigger output (p. 82).

7 Operation

80 Version: 2.1.0 MS249E C-863.12 Mercury Controller

<Value> Trigger mode Short description

5 Motion Error The selected digital output line becomes active when a
motion error occurs (p. 82). The line stays active until the
error code is reset to 0 (by an ERR? query).

6 In Motion The selected digital output line is active as long as the
selected axis is in motion (p. 83).

7 Position+Offset The first trigger pulse is output when the axis has reached a
specified position. The next trigger pulses are each output
when the axis position equals the sum of the last valid
trigger position and a specified distance. The trigger output
is stopped when a stop value is reached. The polarity sign of
the distance value determines the direction of motion in
which trigger pulses are to be output. Refer to "Configuring
the "Position + Offset" Trigger Mode" (p. 83).

8 Single Position The selected digital output line is active when the axis
position has reached or exceeded a specified position (p.
85).

In addition, the polarity (active high / active low) of the signal at the digital output can be set (p.
85).

 INFORMATION
 The settings for the configuration of the digital output lines can only be modified in the volatile

memory of the C-863.12. After switching on or restarting the C-863.12 the factory default
settings are active, unless a configuration has already been made using the startup macro.

7.3.2 Configuring the "Position Distance" Trigger Mode
The Position Distance trigger mode is suitable for scanning applications. Once the axis has
moved along the distance that was set with CTO parameter ID = 1 (TriggerStep), a trigger pulse
is output. The pulse width is one servo cycle.

The unit of the distance (TriggerStep) is subject to the settings of parameters 0xE and 0xF.
Default is mm.

1. Configure the digital output line (<TrigOutID>) that is to be used as the trigger output:

− Send CTO <TrigOutID> 2 A, where A indicates the axis to be moved.

− Send CTO <TrigOutID> 3 0, where 0 specifies the Position Distance trigger
mode.

− Send CTO <TrigOutID> 1 S, where S indicates the distance.

2. If you want to activate the conditions for trigger output, send TRO <TrigOutID> 1.

Example:

A pulse on digital output line 1 is output every time the axis 1 of the positioner has covered a
distance of 0.1 µm.

 Send:

7 Operation

C-863.12 Mercury Controller MS249E Version: 2.1.0 81

CTO 1 2 1

CTO 1 3 0

CTO 1 1 0.0001

TRO 1 1

"Position Distance" trigger mode with start and stop values for positive motion
direction of the axis
Optionally, you can define start and stop values for limiting the range and for specifying the
motion direction of the axis (positive or negative).

 INFORMATION
 If start and stop values have the same value, they are ignored.

If the direction of motion is reversed before the axis position has reached the stop value,
trigger pulses continue to be output.

1. Configure the digital output line (<TrigOutID>) that is to be used as the trigger output:

− Send CTO <TrigOutID> 2 A, where A indicates the axis to be moved.

− Send CTO <TrigOutID> 3 0, where 0 specifies the Position Distance trigger
mode.

− Send CTO <TrigOutID> 1 S, where S indicates the distance.

− Send CTO <TrigOutID> 8 Start, where Start indicates the start value.

− Send CTO <TrigOutID> 9 Stop, where Stop indicates the stop value.

2. If you want to activate the conditions for trigger output, send TRO <TrigOutID> 1.

Example

A pulse on digital output line 1 is output every time the axis 1 of the positioner has covered a
distance of 0.1 µm, as long as axis 1 is moving in positive direction of motion within the range of
0.2 µm to 0.55 µm (start value < stop value).

 Send:
CTO 1 2 1

CTO 1 3 0

CTO 1 1 0.0001

CTO 1 8 0.0002

CTO 1 9 0.00055

TRO 1 1

7 Operation

82 Version: 2.1.0 MS249E C-863.12 Mercury Controller

"Position Distance" trigger mode with start and stop values for negative motion
direction of the axis
The above example is presented with interchanged start and stop values in the following.
Triggering occurs in negative motion direction of the axis (stop value < start value) in the range
between 0.55 µm and 0.2 µm.

Example:

 Send:
CTO 1 2 1

CTO 1 3 0

CTO 1 1 0.0001

CTO 1 8 0.00055

CTO 1 9 0.0002

TRO 1 1

7.3.3 Configuring the "On Target" Trigger Mode
The on-target state of the axis selected (p. 29) is output at the selected trigger output in On
Target trigger mode.

1. Configure the digital output line (<TrigOutID>) to be used as the trigger output:

− Send CTO <TrigOutID> 2 A, where A indicates the axis to be moved.

− Send CTO <TrigOutID> 3 2, where 2 specifies the On Target trigger mode.

2. If you want to activate the conditions for trigger output, send TRO <TrigOutID> 1.

Example:

The on-target state of axis 1 is to be output on the digital output line 1.

 Send:
CTO 1 2 1

CTO 1 3 2

TRO 1 1

7.3.4 Configuring the "Motion Error" Trigger Mode
The Motion Error trigger mode is suitable for monitoring motion. The selected digital output
line becomes active when a motion error occurs on one of the connected axes. The line stays
active until the error code is reset to 0 (by an ERR? query).

7 Operation

C-863.12 Mercury Controller MS249E Version: 2.1.0 83

 INFORMATION
 A motion error occurs when the current position differs too much from the commanded

position during motion.
For further information, see "Motion Error" (p. 75).

1. Configure the digital output line (<TrigOutID>) that is to be used as the trigger output:

− Send CTO <TrigOutID> 3 5, where 5 specifies the Motion Error trigger mode.

2. If you want to activate the conditions for trigger output, send TRO <TrigOutID> 1.

7.3.5 Configuring the "In Motion" Trigger Mode
The motion state of the selected axis is output at the selected trigger output in In Motion
trigger mode. The line is active, as long as the selected axis is in motion.

The motion state can also be read with the #5 (p. 128), #4 (p. 128), and SRG? (p. 189)
commands.

 INFORMATION
 If the axis is in motion, then bit 14 of the state register 1 of the axis is set.

1. Configure the digital output line (<TrigOutID>) that is to be used as the trigger output:

− Send CTO <TrigOutID> 2 A, where A indicates the axis to be moved.

− Send CTO <TrigOutID> 3 6, where 6 specifies the In Motion trigger mode.

2. If you want to activate the conditions for trigger output, send TRO <TrigOutID> 1.

Example:

Digital output line 1 is to be active if axis 1 of the positioner is in motion.

 Send:
CTO 1 2 1

CTO 1 3 6

TRO 1 1

7.3.6 Configuring the "Position + Offset" Trigger Mode
The Position+Offset trigger mode is suitable for scanning applications. The first trigger pulse is
output when the axis has reached a specified position (TriggerPosition). The next trigger pulses
are output respectively when the axis position equals the sum of the last valid trigger position
and a specified distance (TriggerStep). The trigger output is stopped when a stop value is
reached. The polarity sign of the distance value determines the direction of motion in which
trigger pulses are to be output.

The pulse width is one servo cycle.

7 Operation

84 Version: 2.1.0 MS249E C-863.12 Mercury Controller

The unit for TriggerPosition, TriggerStep and stop value is subject to the settings of parameters
0xE and 0xF. Default is mm.

1. Configure the digital output line (<TrigOutID>) that is to be used as the trigger output:

− Send CTO <TrigOutID> 2 A, where A indicates the axis to be moved.

− Send CTO <TrigOutID> 3 7, where 7 specifies the Position+Offset trigger
mode.

− Send CTO <TrigOutID> 1 S, where S indicates the distance.

− Send CTO <TrigOutID> 10 TriPos, where TriPos indicates the position for
the output of the first trigger pulse.

− Send CTO <TrigOutID> 9 Stop, where Stop indicates the stop value.

2. If you want to activate the conditions for trigger output, send TRO <TrigOutID> 1.

Example 1:

The first trigger pulse is to be output on digital output line 1 if the absolute position of axis 1 is
1.5 mm. A pulse should then be output on this line every time axis 1 has covered a distance of
0.1 µm in the positive direction. The last trigger pulse is to be output if the absolute axis
position is 2.5 mm.

 Send:
CTO 1 2 1

CTO 1 3 7

CTO 1 1 0.0001

CTO 1 10 1.5

CTO 1 9 2.5

TRO 1 1

Example 2:

The first trigger pulse is to be output on digital output line 2 if the absolute position of axis B is
0.4 mm. A pulse should then be output on this line every time axis B has covered a distance of
1 µm in the negative direction. The last trigger pulse is to be output if the absolute axis position
is 0.1 mm.

 Send:
CTO 2 2 B

CTO 2 3 7

CTO 2 1 -0.001

CTO 2 10 0.4

CTO 2 9 0.1

7 Operation

C-863.12 Mercury Controller MS249E Version: 2.1.0 85

 INFORMATION
 The velocity setting of the axis must be appropriate for the distance setting (TriggerStep)

commanded by the CTO command. Recommended value:
Maximum velocity = distance * 20 kHz / 2
where 20 kHz is the servo cycle frequency of the C-863.12.

7.3.7 Configuring the "Single Position" Trigger Mode
The selected digital output line is active in Single Position trigger mode, when the axis position
has reached or exceeded a specified position (TriggerPosition).

The unit for TriggerPosition depends on the settings of the parameters 0xE and 0xF. Default is
mm.

1. Configure the digital output line (<TrigOutID>) to be used as the trigger output:

− Send CTO <TrigOutID> 2 A, where A indicates the axis to be moved.

− Send CTO <TrigOutID> 3 8, where 8 specifies the Single Position trigger
mode.

− Send CTO <TrigOutID> 10 TriPos, where TriPos indicates the position at
which the output line is to become active.

2. If you want to activates the conditions for trigger output, send TRO <TrigOutID>
1.

Example:

Digital output line 1 is to become active when the absolute position of axis 1 is at least 1.5 mm.

 Send:
CTO 1 2 1

CTO 1 3 8

CTO 1 10 1.5

7.3.8 Setting Signal Polarity
The polarity of the signal at the digital output which is used for triggering can be selected with
the Polarity CTO parameter. The polarity can have the following values:

 active high = 1 (default setting)

 active low = 0

 Configure the digital output line (<TrigOutID>) to be used as the trigger output:

− Send CTO <TrigOutID> 7 P, where P indicates the polarity.

Example:

The signal polarity for digital output line 1 is to be set to active low.

7 Operation

86 Version: 2.1.0 MS249E C-863.12 Mercury Controller

 Send:
CTO 1 7 0

7.4 Digital Input Signals

The digital inputs of the C-863.12 are available on the I/O socket (p. 260).

 Get the number of the input lines available on the C-863.12 with the TIO? command
(p. 194).

 Get the state of the input lines with the DIO? command (p. 145).

Potential applications:

 Use in macros (p. 88). Details and examples of macros can be found in "Controller
Macros" (p. 99).

 Use as switch signals (p. 89)

 INFORMATION
 The digital inputs (pins 1 to 4) on the I/O socket can also be used as analog inputs.

 Digital: TTL
 Analog: 0 to +5 V

7.4.1 Commands and Parameters for Digital Inputs

Commands
The following commands are available for the use of digital inputs:

Command Syntax Function
CPY CPY <Variable>

<CMD?>
Copies the state of a digital input line to a variable when
used in conjunction with the DIO? query command. Use in
macros to set local variables (p. 120).

DIO? DIO? [{<DIOID>}] Gets the state of the digital input lines.

FED FED {<AxisID>
<EdgeID> <Param>}

Starts a move to a signal edge. The signal source can be a
digital input line.

FNL FNL [{<AxisID>}] Starts a referencing move to the negative physical limit of
the travel range A digital input line can be used as the
source of the negative limit switch signal instead of the
negative limit switch.

7 Operation

C-863.12 Mercury Controller MS249E Version: 2.1.0 87

Command Syntax Function
FPL FPL [{<AxisID>}] Starts a referencing move to the positive physical limit of

the travel range Limit switch. A digital input line can be used
as the source of the positive limit switch signal instead of
the positive limit switch.

FRF FRF [{<AxisID>}] Starts a referencing move to the reference switch. A digital
input line can be used as the source of the reference switch
signal instead of the reference switch.

JRC JRC <Jump>
<CMD?> <OP>
<Value>

Can only be used in macros. Triggers a relative jump of the
macro run pointer depending on the state of a digital input
line when used in conjunction with the DIO? query
command.

MEX MEX <CMD?> <OP>
<Value>

Can only be used in macros. Stops running of the macro
depending on the state of a digital input line when used in
conjunction with the DIO? query command.

WAC WAC <CMD?> <OP>
<Value>

Can only be used in macros. Waits until a digital input line
reaches a certain state when used in conjunction with the
DIO? query command.

Parameters
The following parameters are available for the configuration of digital inputs:

Parameters Description and Possible Values

Source Of Reference
Signal
0x5C

Specifies the source of the reference signal for the FRF and FED
commands:
0 = reference switch
1 = Digital input 1
2 = Digital input 2
3 = Digital input 3
4 = Digital input 4

Source Of Negative
Limit Signal
0x5D

Specifies the source(s) of the negative limit switch signal for the FNL
and FED commands via a bitmask:
0 = Negative limit switch (default setting)
1 = Digital input 1 (bit 0)
2 = Digital input 2 (bit 1)
4 = Digital input 3 (bit 2)
8 = Digital input 4 (bit 3)

7 Operation

88 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Parameters Description and Possible Values

Source Of Positive
Limit Signal
0x5E

Specifies the source(s) of the positive limit switch signal for the FPL
and FED commands via a bitmask:
0 = Positive limit switch (default setting)
1 = Digital input 1 (bit 0)
2 = Digital input 2 (bit 1)
4 = Digital input 3 (bit 2)
8 = Digital input 4 (bit 3)

Invert Digital Input
Used For Negative
Limit
0x5F

Inverts the polarity of the digital inputs, which are used for the source
of the negative limit switch signal, via a bitmask:
0 = No digital input inverted (default setting).
1 = Digital input 1 inverted (bit 0)
2 = Digital input 2 inverted (bit 1)
4 = Digital input 3 inverted (bit 2)
8 = Digital input 4 inverted (bit 3)

Invert Digital Input
Used For Positive
Limit
0x60

Inverts the polarity of the digital inputs, which are used for the source
of the positive limit switch signal, via a bitmask:
0 = No digital input inverted (default setting).
1 = Digital input 1 inverted (bit 0)
2 = Digital input 2 inverted (bit 1)
4 = Digital input 3 inverted (bit 2)
8 = Digital input 4 inverted (bit 3)

7.4.2 Using Digital Input Signals in Macros
The digital inputs on the I/O socket can be used in macros as follows:

 Conditional running of the macro

 Conditional stopping of the macro

 Conditional jump of the macro pointer

 Copying the input state to a variable

Further information and examples can be found in "Controller Macros" (p. 99).

 INFORMATION
 You can connect the C-170.PB pushbutton box from PI to the I/O socket (p. 260) to generate

the digital input signals for use in macros. It also displays the state of the digital output lines via
LEDs.

7 Operation

C-863.12 Mercury Controller MS249E Version: 2.1.0 89

7.4.3 Using Digital Input Signals as Switch Signals
The digital inputs on the I/O socket can be used as the source of reference point and limit
switch signals (e.g., for referencing moves (p. 34)) for an axis.

Using digital input as reference signal

 INFORMATION
 The level of the digital input signal which you use instead of the reference switch may only

change once across the entire travel range.
 Use a suitable signal source.
 If necessary, invert the signal logic of the digital input line by setting the Invert Reference?

parameter (ID 0x31) accordingly.

 INFORMATION
 The Has Reference? parameter (ID 0x14) has no influence on the use of a digital input line as

the source of the reference signal.

 Select the source of the reference signal for the axis by changing the Source Of
Reference Signal parameter (ID 0x5C).

Detailed information on changing parameters can be found in "Adapting Settings" (p. 227).

Using digital inputs as source of the limit switch signals

 INFORMATION
 Several digital inputs can be selected as the source for a limit switch signal.

If a limit switch signal is used for referencing moves, only one digital input line may be selected
as the source of the limit switch signal.

 INFORMATION
 The level of the digital input signal which you use instead of an internal limit switch may only

change once across the entire travel range.
 Use suitable signal sources.
 If necessary, invert the signal logic of the digital input lines by setting parameters Invert

Digital Input Used For Negative Limit (ID 0x5F) and Invert Digital Input Used For Positive
Limit (ID 0x60) accordingly.

 INFORMATION
 The Has No Limit Switches? parameter (ID 0x32) determines whether the C-863.12 evaluates

the signals from the internal limit switches of the positioner. This parameter has no influence
on the use of digital input lines as the source of the limit switch signal.

7 Operation

90 Version: 2.1.0 MS249E C-863.12 Mercury Controller

 Select the source(s) of the negative limit switch signal for the axis by changing the
Source Of Negative Limit Signal parameter (ID 0x5D).

 Select the source(s) of the positive limit switch signal for the axis by changing the
Source Of Positive Limit Signal parameter (ID 0x5E).

Detailed information on changing parameters can be found in "Adapting Settings" (p. 227).

Example:

Digital input lines 1, 3, and 4 are to be used for axis 1 as the sources of the positive limit switch
signal. In addition, the signal polarity of lines 1 and 3 is to be inverted for axis 1. All adaptations
are made in the volatile memory of the C-863.12 only.

 Send:

SPA 1 0x5E 13, to select lines 1, 3, and 4.

SPA 1 0x60 5, to invert the signal polarity of lines 1 and 3.

7.5 Analog Input Signals

The analog inputs of the C-863.12 are available on the I/O socket (p. 260).

 Get the number of the analog input lines available on the C-863.12 with the TAC?
command (p. 193).

 Query the voltage on the analog inputs with the TAV? command (p. 193).

 Use the data recorder (p. 76) to record the analog input signals.

Potential applications:

 Use in macros (p. 91): Details and examples of macros are found in "Controller Macros"
(p. 99).

 Scanning applications with PIMikroMove (see PIMikroMove manual)

 INFORMATION
 The analog inputs (pins 1 to 4) on the I/O socket can also be used as digital inputs.

 Analog: 0 to +5 V
 Digital: TTL

7.5.1 Commands for Analog Inputs
The following commands are available for the use of analog inputs:

Command Syntax Function
CPY CPY <Variable>

<CMD?>
Copies the voltage value of an analog input line to a variable
when used in combination with the TAV? query command.
Use in macros to set local variables (p. 120).

7 Operation

C-863.12 Mercury Controller MS249E Version: 2.1.0 91

Command Syntax Function
DRC DRC {<RecTableID>

<Source>
<RecOption>}

Configures the data recorder. Analog input values can be
recorded using record option 81.

JRC JRC <Jump>
<CMD?> <OP>
<Value>

Can only be used in macros. Triggers a relative jump of the
pointer when running the macro depending on the voltage
at an analog input line when used in conjunction with the
TAV? query command.

MEX MEX <CMD?> <OP>
<Value>

Can only be used in macros. Stops running of the macro
depending on the voltage at an analog input line when used
in conjunction with the TAV? query command.

TAC? TAC? Get the number of installed analog lines.
TAV? TAV?

[{<AnalogInputID>}]
Get voltage at analog input.

WAC WAC <CMD?> <OP>
<Value>

Can only be used in macros. Waits until an analog input line
reaches a certain voltage when used in conjunction with the
TAV? query command.

7.5.2 Using Analog Input Signals in Macros
The analog inputs on the I/O socket can be used in macros as follows:

 Conditional running of the macro

 Conditional stopping of the macro

 Conditional jump of the macro pointer

 Copying the input state to a variable

Further information and examples can be found in "Controller Macros" (p. 99).

7 Operation

92 Version: 2.1.0 MS249E C-863.12 Mercury Controller

7.6 Joystick Control

7.6.1 How Joystick Control Works
The joystick axis controls the velocity of the positioner axis connected to the C-863.12
(commanded velocity output from the profile generator).

The relationship between the displacement of the joystick axis and the velocity of the
positioner axis is established by the C-863.12 using a lookup table. The 256 values in the lookup
table are factors that are applied to the velocity set with the VEL command (p. 199) during
joystick control. The value range is from -1.0000 to 1.0000.

The firmware of the controller provides two predefined lookup table types to choose from
(linear and parabolic) and allows the lookup table to be filled with custom values. The content
of the lookup table is automatically saved in the nonvolatile memory of the C-863.12.

During joystick control, the soft limit specified by the parameter 0x15 or 0x30 is used as the
target position. For details, see "Travel Range and Soft Limits" (p. 31). When disabling the
joystick, the current position of the joystick-controlled axis is set as the new target position.

 INFORMATION
 Motion commands are not allowed when a joystick is activated for the axis.

Joystick control is not possible in open-loop operation (servo mode OFF).

7.6.2 Commands and Parameters for Joystick Control

Commands
The following commands are available for the use of the joystick:

Command Syntax Function

JON JON {<JoystickID> <uint>} Activates or deactivates a joystick connected to
the controller.

JON? JON? [{<JoystickID>}] Gets the activation state of the joystick.

JAX JAX <JoystickID> <JoystickAxis>
<AxisID>

Specifies the axis that is controlled by a joystick
connected to the controller.

JAX? JAX? [{<JoystickID>
<JoystickAxis>}]

Gets the axis that is controlled by a joystick
connected to the controller.

JAS? JAS? [{<JoystickID>
<JoystickAxis>}]

Gets the current state of a joystick axis
(displacement).

JBS? JBS? [{<JoystickID>
<JoystickButton>}]

Gets the current state of a joystick button
(pressed or not pressed).

7 Operation

C-863.12 Mercury Controller MS249E Version: 2.1.0 93

Command Syntax Function

JDT JDT {<JoystickID> <JoystickAxis>
<uint>}

Specifies a default lookup table type for a
joystick axis.

JLT JLT <JoystickID> <JoystickAxis>
<Addr> <floatn>

Fills the lookup table for a joystick axis with
custom values.

JLT? JLT? [<StartPoint>
<NumberOfPoints>
[{<JoystickID> <JoystickAxis>}]]

Gets the current valid lookup table values.

Parameters
The following parameters are available for the use of the joystick:

Parameters Description and possible values

Invert Direction Of
Motion For Joystick-
Controlled Axis?
0x61

Specifies the direction of motion for joystick-controlled axes.
0 = direction of motion not inverted (default setting)
1 = direction of motion inverted

7.6.3 Controlling Axis Motion
PIMikroMove is used in the following to activate joystick control for the positioner. It is not
necessary to know the corresponding GCS commands.

 NOTICE

Unintentional motion while activating the joystick!
If no joystick is connected to the C-863.12, activating the joystick in the software can cause
unintentional motion of the axis connected.
 Activate the joystick in the software only if a joystick is actually connected to the C-863.12.

 INFORMATION
 The use of macros provides a wide range of application possibilities for joystick control. In

particular, the joystick button can be used in macros for a wide variety of applications. Details
and examples of macros are found in "Controller Macros" (p. 99).

 INFORMATION
 The C-863.12 supports one logical axis and is therefore normally used with positioners that

only have one motion axis. In this case, the designation "axis" is synonymous with "positioner".
Therefore, no distinction is made between "positioner" and "axis" in the following operational
instructions.

7 Operation

94 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Requirements
 You have started operation of the positioner (p. 64) and initial motion with

PIMikroMove.

 You have connected a joystick to the C-863.12 (p. 49).

Controlling axis motion via a joystick
1. Open the Configure Controller Joystick window in the main window of PIMikroMove via

the C-863.12 > Configure controller joystick(s)...menu item.

The C-863.12 joystick and its axis are listed in the Configure Controller Joystick window.

2. Assign the axis to be moved to the joystick axis:

a) Click Select in the Configure Controller Joystick window.

b) Mark the correct positioner name in the Select controller axis window.

c) Click OK in the Select controller axis window to confirm selection and close the
window.

3. Activate the joystick in the Configure Controller Joystick window by checking the
respective Enable checkbox.

If joystick control does not operate satisfactorily or the positioner moves even though
you are not moving the joystick:

− Check whether the joystick is locked mechanically.

− Calibrate the joystick (p. 95).

4. Control the velocity of the positioner via the joystick.

5. If you want to deactivate joystick control, remove the tick from the respective Enable
checkbox in the Configure Controller Joystick window.

7 Operation

C-863.12 Mercury Controller MS249E Version: 2.1.0 95

7.6.4 Calibrating the Joystick
Calibration of the individual joystick axes is recommended after connecting a joystick to the C-
863.12 for the first time.

Calibration involves the following steps:

 If corresponding operating elements are on the joystick: Adjusting the joystick axes
mechanically.

 Calibrating the joystick axes in PIMikroMove

 INFORMATION
 The lookup table type to be used is selected or the lookup table is filled with custom values

when calibrating the joystick in PIMikroMove. To do this, a positioner does not need to be
connected to the C-863.12.

Calibration is necessary for proper joystick control in the following cases:

 After activating joystick control, the positioner moves even though you are not moving
the joystick.

 The response behavior of the joystick does not correspond to your requirements.

 You are using the Z axis of a C-819.30 joystick.

 INFORMATION
 The number of write cycles in the nonvolatile memory is restricted by the limited lifetime of

the memory chip (EEPROM).
 Calibrate the joystick axes in PIMikroMove only if it is necessary.
 Contact our customer service department (p. 253) if the C-863.12 shows unexpected

behavior.

 INFORMATION
 It is not possible to adjust the Z axis of C-819.30's joystick mechanically and it cannot be

operated using the C-863.12's standard lookup table types (linear or parabolic) .
 Calibrate the Z axis of the joystick after connecting to the C-863.12 with PIMikroMove.
 Use the Measure Joystick Parameters and Use Custom Lookup Table method for

calibrating the Z axis.
 Repeat calibration of the Z axis if you are connecting the Z axis to another controller.

 INFORMATION
 The parabolic lookup table type allows greater sensitivity at low velocity.

Adjusting a joystick axis mechanically
 Check whether the positioner moves when joystick control is activated even though you

are not moving the joystick.

7 Operation

96 Version: 2.1.0 MS249E C-863.12 Mercury Controller

If so:

 Check whether the joystick is locked mechanically and unlock if necessary.

 Keep the affected joystick axis (that means for example, the control lever) at the center
position and adjust it with the appropriate operating elements until the positioner no
longer moves. With the C-819.20 and C-819.30 joysticks, turn the corresponding rotary
knob for adjustment (p. 97).

If not:

 Check whether the response behavior of the joystick corresponds to your requirements.

If so:

− The calibration is finished.

If not:

− Calibrate the joystick axis in PIMikroMove.

Calibrating the joystick axis in PIMikroMove
1. Open the Joystick Calibration window in the main window of PIMikroMove via the C-

863.12 > Calibrate controller joystick… menu item.

2. Select the calibration method by clicking on the appropriate button:

− If you want to use the linear lookup table type for the joystick axis, click Use Linear
Standard Lookup Table. With this, the appropriate lookup table type is loaded and
the calibration is finished.

− If you want to use the parabolic lookup table type for the joystick axis, click Use
Parabolic Standard Lookup Table. With this, the appropriate lookup table type is
loaded and the calibration is finished.

7 Operation

C-863.12 Mercury Controller MS249E Version: 2.1.0 97

− If you have connected the Z axis of a C-819.30 joystick or generally want to map the
behavior of the joystick in an individual lookup table, click Measure Joystick
Parameters and Use Custom Lookup Table. Here the Controller Joystick Calibration
window opens.

3. When the Controller Joystick Calibration window has opened, follow the instructions in
this window.

The custom lookup table values are determined in this way.

By clicking on OK, you load the lookup table values into the nonvolatile memory of the
C-863.12. Calibration is now finished.

7.6.5 Joysticks Available
PI provides the joysticks described in the following as optional accessories (p. 10).

Analog C-819.20 joystick, 2 axes

Figure 21: C-819.20 joystick

1
2
3
4
5
6
7

Pushbutton for the X axis
Pushbutton for the Y axis
Adjustment indicator
Rotary knob for adjustment of the Y axis (calibration)
X axis lock
Y axis lock
Rotary knob for adjustment of the X axis (calibration)

7 Operation

98 Version: 2.1.0 MS249E C-863.12 Mercury Controller

C-819.30 analog joystick, 3 axes

Figure 22: C-819.30 joystick

1
2
3
4
5
6
7
8
9
10
11
12

Cable for the Z axis
Cable for the Y axis
Cable for the X axis
Adjustment indicator
Pushbutton for the Y axis
Rotary knob for adjustment of the Y axis (calibration)
XY control lever with rotary knob for Z axis
X axis lock
Rotary knob for adjustment of the X axis (calibration)
Y axis lock
Pushbutton for the Z axis
Pushbutton for the X axis

Figure 23: C-819.30 joystick, rotary knob for the Z axis

7 Operation

C-863.12 Mercury Controller MS249E Version: 2.1.0 99

7.7 Controller Macros

7.7.1 Overview: Macro Functionality and Example Macros
The C-863.12 can save and process command sequences as macros.

The following functionalities make macros an important tool in many application areas:

 Several macros can be saved at the same time.

 Any macro can be defined as the startup macro. The startup macro runs each time the
C-863.12 is switched on or rebooted.

 Processing and stopping a macro can be linked to conditions. This makes loops possible.

 Macros can call up themselves or other macros.

 Variables (p. 120) can be set for the macro and in the macro itself and used in different
operations.

 Input signals can be evaluated for conditions and variables.

You will find example macros in this manual for the following tasks:

 Moving an axis back and forth (p. 103)

 Recording a macro for a controller whose address is different to 1 (p. 104)

 Moving an axis with a variable travel range back and forth (p. 106)

 Implementing multiple calls of a macro via a loop (p. 107)

 Preparing an axis for operation via a startup macro (p. 108)

 Synchronizing two controllers (p. 110)

 Stopping motion by pushbutton (p. 111)

 Joystick control with storage of positions (p. 112)

 Joystick control with change in velocity (p. 115)

7 Operation

100 Version: 2.1.0 MS249E C-863.12 Mercury Controller

7.7.2 Commands and Parameters for Macros

Commands
The following commands are available specifically for handling macros or for use in macros:

Command Syntax Function

ADD (p.
131)

ADD <Variable> <FLOAT1>
<FLOAT2>

Adds two values and saves the result to a variable
(p. 120). Can only be used for local variables in
macros.

CPY (p.
136)

CPY <Variable> <CMD?> Copies a command response to a variable (p. 120).
Can only be used for local variables in macros.

DEL (p.
142)

DEL <uint> Can only be used in macros. Delays <uint>
milliseconds.

JRC (p.
167)

JRC <Jump> <CMD?> <OP>
<Value>

Can only be used in macros. Triggers a relative
jump of the macro execution pointer depending
on a condition.

MAC (p.
169)

MAC BEG <macro name> Starts the recording of a macro with the name
macro name on the controller. macro name can
consist of up to 8 characters.

MAC DEF <macro name> Defines the specified macro as the startup macro.
MAC DEF? Gets the startup macro.
MAC DEL <macro name> Deletes the specified macro.
MAC END Ends the macro recording.

MAC ERR? Reports the last error that occurred while the
macro was running.

MAC NSTART <macro name>
<uint> [<String1> [<String2>]]

Starts the specified macro n times in succession (n
= number of times). The values of local variables
can be set for the macro with <String1> and
<String2>.

MAC START <macro name>
[<String1> [<String2>]]

Runs the specified macro. The values of local
variables can be set for the macro with <String1>
and <String2>.

MAC? (p.
172)

MAC? [<macro name>] Lists all macros or the content of a specified
macro.

MEX (p.
174)

MEX <CMD?> <OP> <Value> Can only be used in macros. Stops the macro
execution depending on a condition.

RMC? (p.
180)

RMC? Lists macros which are currently running.

VAR (p.
197)

VAR <Variable> <String> Sets a variable (p. 120) to a certain value or
deletes it. Can only be used for local variables in
macros.

7 Operation

C-863.12 Mercury Controller MS249E Version: 2.1.0 101

Command Syntax Function

VAR? (p.
199)

VAR? [{<Variable>}] Gets variable values.

WAC (p.
200)

WAC <CMD?> <OP> <Value> Can only be used in macros. Waits until a
condition is met.

#8 (p.
129)

- Tests if a macro is running on the controller.

Parameters
The following parameter is available for working with macros:

Parameters Description and Possible Values

Ignore Macro Error?
0x72

Determines whether the controller macro is stopped if an error occurs
when it is running.
 0 = Stop macro when error occurs (default)
 1 = Ignore error

7.7.3 Working with Macros
Work with macros comprises the following:

 Recording macros (p. 101)

 Starting macros (p. 105)

 Stopping macros (p. 107)

 Configuring a startup macro (p. 107)

 Deleting macros (p. 108)

 INFORMATION
 It is recommended to use the Controller macros tab in PIMikroMove when working with

controller macros. There you can record, start, and manage controller macros easily. Refer to
the PIMikroMove manual for details.

Recording a macro

 INFORMATION
 The C-863.12 can save up to 32 macros simultaneously. A maximum of 5 nesting levels are

possible in macros.

7 Operation

102 Version: 2.1.0 MS249E C-863.12 Mercury Controller

 INFORMATION
 Basically all GCS commands (p. 117) can be included in a macro. Exceptions:

 RBT for rebooting the C-863.12
 MAC BEG and MAC END for macro recording
 MAC DEL for deleting a macro
Query commands can be used in macros in conjunction with the CPY, JRC, MEX, and WAC
commands. Otherwise they have no effect, since macros do not send any responses to
interfaces.

 INFORMATION
 If you record a macro on a C-863.12 whose controller address is different to 1, note the

following when entering the commands that are to be an element of the macro:
 If you are working with PITerminal and have established communication with the

Connect… button, the target address has to be typed in in every command line.
 If you are working with PIMikroMove or have established communication with PITerminal

using the GCS DLL… button, the target address is automatically sent and may not be typed
in.

 INFORMATION
 To make the use of macros more flexible, you can use local and global variables in macros. For

further information, see "Variables" (p. 120).

 INFORMATION
 The number of write cycles in the nonvolatile memory is restricted by the limited lifetime of

the memory chip.
 Only record macros if it is necessary.
 Use variables (p. 120) in macros to make macros more flexible, and give the corresponding

variable values when starting macro execution.
 Contact our customer service department (p. 253) if the C-863.12 shows unexpected

behavior.

 INFORMATION
 A macro is overwritten if a macro with the same name is re-recorded.

1. Start the macro recording.

− If you are working with PITerminal or in the Command entry window of
PIMikroMove: Send the MAC BEG macroname command, where macro name
indicates the name of the macro.

7 Operation

C-863.12 Mercury Controller MS249E Version: 2.1.0 103

− If you are working in PIMikroMove on the Controller macros tab: Click the Create
new empty macro icon to create a tab for entering a new macro. Do not enter the
MAC BEG macroname command.

2. Enter the commands to be included in the macro name macro line by line, using the
normal command syntax.

Macros can call up themselves or other macros in several nesting levels.

3. End the macro recording.

− If you are working with PITerminal or in the Command entry window of
PIMikroMove: Send the MAC END command.

− If you are working in PIMikroMove on the Controller macros tab: Do not enter the
MAC END command. Click the Send macro to controller icon and enter the name
of the macro in a separate dialog window.

The macro has been stored in the nonvolatile memory of the C-863.12.

4. If you want to check whether the macro has been correctly recorded:

If you are working with PITerminal or in the Command entry window of PIMikroMove:

− Get which macros are saved in the C-863.12 by sending the MAC? command.

− Get the contents of the macro name macro by sending the MAC? macroname
command.

If you are working in PIMikroMove on the Controller macros tab:

− Click the Read list of macros from controller icon.

− Mark the macro to be checked in the list on the left-hand side and click the Load
selected macro from controller icon.

Example: Moving an axis back and forth

 INFORMATION
 When macros are recorded on the Controller macros tab in PIMikroMove, the commands MAC

BEG and MAC END must be left out.

The axis 1 is to move back and forth. For this purpose, 3 macros are recorded. Macro 1 starts
motion in a positive direction and waits until the axis has reached the target position. Macro 2
does this task for the negative direction of motion. Macro 3 calls up macro 1 and 2.

 Record the macros by sending:
MAC BEG macro1

MVR 1 12.5

WAC ONT? 1 = 1

MAC END

MAC BEG macro2

MVR 1 -12.5

7 Operation

104 Version: 2.1.0 MS249E C-863.12 Mercury Controller

WAC ONT? 1 = 1

MAC END

MAC BEG macro3

MAC START macro1

MAC START macro2

MAC END

Example: Recording macro for controller whose address is different from 1

 INFORMATION
 When macros are recorded on the Controller macros tab in PIMikroMove, the commands MAC

BEG and MAC END must be left out.

The controller address is set to 2 via the DIP switches. In this example, macro recording is done
using PITerminal, whereby communication was established with the Connect… button (as a
result, the target address has to be typed in in every command line).

The servo mode is to be switched on for axis 1 via the ref macro and a referencing move to the
reference switch is to be started.

1. Record the macro by sending:
2 MAC BEG ref

2 SVO 1 1

2 DEL 1000

2 FRF 1

2 MAC END

2. Check the content of the ref macro by sending:
2 MAC? ref

The response reads:
0 2 SVO 1 1

DEL 1000

FRF 1

The first line of the response contains the target and sender address corresponding to
the GCS syntax for multiline responses. However, the target address is not included in
the macro.

7 Operation

C-863.12 Mercury Controller MS249E Version: 2.1.0 105

Starting a macro

 INFORMATION
 Any commands can be sent from the command line when a macro is running on the controller.

The macro content and motion commands received from the command line can overwrite
each other.

 INFORMATION
 It is not possible to run several macros simultaneously. Only one macro can be run at a time.

 INFORMATION
 You can link the macro execution to conditions with the JRC and WAC commands. The

commands must be included in the macro.

In the following, PITerminal or the Command entry window of PIMikroMove is used to enter
commands. Details on working with the Controller macros tab in PIMikroMove are in the
PIMikroMove manual.

1. If the macro is to continue running despite an error:

− Set the Ignore Macro Error? parameter (ID 0x72) correspondingly: Send the SPA 1
0x72 Status command, whereby Status can have the value 0 or 1 (0 = Stop
macro when error occurs (default); 1 = Ignore macro error).

Further information on changing parameters can be found in "Adapting Settings" (p.
227).

2. Start the macro:

− If the macro is to be run once, send the MAC START macroname string
command, whereby macroname indicates the name of the macro.

− If the macro is to be run n times, send the MAC NSTART macroname n
string command, whereby macroname indicates the name of the macro and n
indicates the number of runs.

string stands for the values of local variables. The values only have to be specified when
the macro contains corresponding local variables. The sequence of the values in the
input must correspond to the numbering of the appropriate local variables, starting
with the value of local variable 1. The individual values must be separated from each
other by spaces.

3. If you want to check whether the macro is running:

− Query whether a macro is running on the controller by sending the #8 command.

− Query the name of the macro that is currently running on the controller by sending
the RMC? command.

7 Operation

106 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Example: Moving an axis with a variable travel distance back and forth

 INFORMATION
 When macros are recorded on the Controller macros tab in PIMikroMove, the commands MAC

BEG and MAC END must be left out.

The axis 1 is to move back and forth. The travel to the left and to the right is to be variably
adjustable without having to change the used macros. Local and global variables are therefore
used.

1. Create the global variables LEFT and RIGHT by sending:
VAR LEFT 5

VAR RIGHT 15

LEFT therefore has the value 5, and RIGHT has the value 15. These values can be
changed at any time, e.g., by sending the VAR command again.

− Create the global variables again each time the C-863.12 is switched on or
rebooted, since they are only written to the volatile memory of the C-863.12.

2. Record the MOVLR macro by sending:
MAC BEG movlr

MAC START movwai ${LEFT}

MAC START movwai ${RIGHT}

MAC END

MOVLR successively starts the MOVWAI macro (which is still to be recorded) for both
directions of motion. The values of the global variables LEFT and RIGHT are used when
MOVWAI is started, to set the value of the local variable 1 contained in MOVWAI (dollar
signs and braces are necessary for the local variable 1 in the macro to actually be
replaced by the value of the global variable and not by its name).

3. Record the MOVWAI macro by sending:
MAC BEG movwai

MOV 1 $1

WAC ONT? 1 = 1

MAC END

MOVWAI moves axis 1 to the target position which is specified by the value of the local
variable 1 and waits until the axis has reached the target position.

4. Run the MOVLR macro by sending:
MAC NSTART movlr 5

The MOVLR macro is executed five times in succession, i.e., axis 1 alternately moves to
the positions 5 and 15 five times. You can also select any other value for the number of
executions.

7 Operation

C-863.12 Mercury Controller MS249E Version: 2.1.0 107

Example: Implementing multiple calls of a macro via a loop

 INFORMATION
 When macros are recorded on the Controller macros tab in PIMikroMove, the commands MAC

BEG and MAC END must be left out.

The TESTDION macro checks the status of the digital input lines on the I/O socket. It uses a local
variable to identify the digital input line (1 to 4). So that the TESTDION macro does not have to
be called separately for each input line, another macro with a loop is recorded.

 Record the LOOPDION macro by sending:
MAC BEG loopdion

VAR COUNTER 1

MAC START TESTDION ${COUNTER}

ADD COUNTER ${COUNTER} 1

JRC -2 VAR? COUNTER < 5

MAC END

The COUNTER variable is created with the value 1. After this, the TESTDION macro is
started for the input line whose identifier is specified via the COUNTER variable. Then
the value of the COUNTER is increased by 1. As long as the value of the COUNTER is less
than 5, the macro execution pointer subsequently jumps two lines back, so that the
TESTDION is now started for the next digital input line.

Stopping a macro

 INFORMATION
 You can link the stopping of the macro execution to a condition with the MEX command. The

command must be included in the macro.

In the following, PITerminal or the Command entry window of PIMikroMove is used to enter
commands. Details on working with the Controller macros tab in PIMikroMove are in the
PIMikroMove manual.

 Stop the macro execution with the #24 or STP commands.

 If you want to check whether an error has occurred during macro execution, send the
MAC ERR? command. The response shows the last error that occurred.

Configuring a startup macro
Any macro can be defined as the startup macro. The startup macro is executed each time the C-
863.12 is switched on or rebooted.

 INFORMATION
 Deleting a macro does not delete its selection as a startup macro.

7 Operation

108 Version: 2.1.0 MS249E C-863.12 Mercury Controller

In the following, PITerminal or the Command entry window of PIMikroMove is used to enter
commands. Details on working with the Controller macros tab in PIMikroMove are in the
PIMikroMove manual.

 Define a macro as the startup macro with the MAC DEF macroname command,
whereby macroname indicates the name of the macro.

 If you want to cancel the selection of the startup macro and do not want to define
another macro as the startup macro, only send MAC DEF.

 Get the name of the currently defined startup macro by sending the MAC DEF?
command.

Example: Preparing an axis for operation via a startup macro

 INFORMATION
 When macros are recorded on the Controller macros tab in PIMikroMove, the commands MAC

BEG and MAC END must be left out.

The STARTCL macro switches joystick control off and the servo mode on for axis 1 and starts a
referencing move to the negative limit switch. As STARTCL is defined as the startup macro, axis
1 is ready for closed-loop operation immediately after switch-on.

 Send:
MAC BEG startcl

JON 1 0

SVO 1 1

DEL 1000

FNL 1

MAC END

MAC DEF startcl

 INFORMATION
 When this macro is used, the parameter settings of the C-863.12's parameter settings should

be adapted to the connected positioner in the nonvolatile memory. Alternatively, the
parameter settings can also be configured in the volatile memory via the startup macro. For
further information, see "Adapting Settings" (p. 227).

Deleting a macro

 INFORMATION
 A macro cannot be deleted while it is running.

In the following, PITerminal or the Command entry window of PIMikroMove is used to enter
commands. Details on working with the Controller macros tab in PIMikroMove are in the
PIMikroMove manual.

7 Operation

C-863.12 Mercury Controller MS249E Version: 2.1.0 109

 Delete a macro with the MAC DEL macroname command, whereby macro name
indicates the name of the macro.

7.7.4 Making Backups and Loading Controller Macros
For example, making backups of controller macros on the PC can be useful before updating the
firmware (p. 245).

 INFORMATION
 The use of the Controller macros tab in PIMikroMove is recommended for backing up and

loading controller macros. A detailed description of the tab can be found in the PIMikroMove
manual.

Backing up controller macros onto the PC with PIMikroMove
1. Select the Controller macros tab in the PIMikroMove main window.

2. Select the macros in the Macros on controller list that you want to back up to the PC:

− Click the desired entry in the list to select an macro.

− To select several macros, hold down the Shift button and click the desired entries in
the list.

− To deselect, click an empty area in the list.

By selecting one or more macros, the (Save selected macros to PC) button becomes
active.

3. Save the selected macros on the PC:

a) Click the button to open a directory selection window.

b) Select the directory on the PC where you want to save the macros.

c) Click Save.

The macros are saved as text files (<macro name>.txt) to the directory selected on the
PC.

Loading controller macros from the PC to the C-863.12 with PIMikroMove
1. Select the Controller macros tab in the PIMikroMove main window.

2. Load macros from the PC to the C-863.12:

a) Click the button to open a file selection window.

b) Select the text files (<macro name>.txt) in the file selection window whose contents
you want to load as a macro from the PC to the C-863.12.

c) Click Open.

7 Operation

110 Version: 2.1.0 MS249E C-863.12 Mercury Controller

For each selected text file (<macro name>.txt), the content is loaded as a macro <macro
name> into the C-863.12.

7.7.5 Macro Example: Synchronization of Two Controllers

 INFORMATION
 When macros are recorded on the Controller macros tab in PIMikroMove, the commands MAC

BEG and MAC END must be left out.

Action Command Result

Connect the digital
output line 1 on the I/O
socket of the master
controller to digital
input line 1 on the I/O
socket of the slave
controller.

-
Use a suitable cable. Pin
assignment see "I/O" (p.
260).

The digital output signal of the master controller can
be used as the trigger for the motion of the axis
connected to the slave controller.

Set up the motion on
the master controller
and on the slave
controller.

SVO 1 1
FRF 1 1
VEL 1 0
MOV 1 5.5

For both controllers: The servo mode is switched on
and the axis has executed a referencing move – here
to the reference switch. The velocity is set to zero.
The axis does not move for now as a result, even
though the motion command for the move to
absolute position 5.5 has already been sent.

Record the MASTER
macro on the master
controller.

MAC BEG master
DIO 1 1
VEL 1 100
MAC END

The macro has the following tasks:
 Switch the digital output line 1 of the master

controller to high state to trigger the slave
controller

 Set velocity to 100 to start the motion

Record the SLAVE
macro on the slave
controller.

MAC BEG slave
WAC DIO? 1 = 1
VEL 1 100
MAC END

The macro has the following tasks:
 Set condition: The macro continues only if digital

input line 1 has the high state (i.e., if the master
controller outputs the trigger signal).

 Set velocity to 100 to start the motion

Start the SLAVE macro
on the slave controller.

MAC START slave The axis on the slave controller is still not moving
because the condition for further macro execution
has not yet been met.

Start the MASTER
macro on the master
controller.

MAC START master Both axes are moving because their velocity is now
each different from zero. The motion occurs
synchronously.

7 Operation

C-863.12 Mercury Controller MS249E Version: 2.1.0 111

7.7.6 Macro Example: Stopping Motion by Pushbutton

 INFORMATION
 You can connect the C-170.PB pushbutton box from PI to the I/O socket to generate the digital

input signals for use in macros. It also displays the state of the digital output lines via LEDs.

 INFORMATION
 When macros are recorded on the Controller macros tab in PIMikroMove, the commands MAC

BEG and MAC END must be left out.

Action Command Result

Connect digital input
line 1 on the I/O socket
to an appropriate signal
source.

-
Pin assignment see "I/O"
(p. 260).

For example,the digital input signal can be used for a
conditional jump of the macro pointer.

Record the HALT macro
on the controller.

MAC BEG halt
MVR 1 5
JRC 2 DIO? 1 = 1
JRC -1 ONT? 1 = 0
HLT 1
MAC END

The macro has the following tasks:
 Start relative motion of axis 1
 Set a condition: If digital input line 1 has the high

state (when using the pushbutton box: button 1 is
pressed), the macro execution pointer jumps two
lines forward. This stops the axis. Otherwise
macro execution is continued with the next line.

 Set condition: The macro execution pointer jumps
back one line as long as axis 1 has not yet reached
the target position. A loop is established as a
result.

Run the HALT macro on
the controller.

MAC START halt Axis 1 starts to move. It is stopped by switching digital
input line 1 to the high state (e.g., by pushbutton).
Irrespective of whether the axis has reached the
target position or was halted previously, the error
code is set to 10 via the HLT command.

If error code 10
interferes: Record
alternative HALTVAR
macro which uses a
variable. Details see
"Variables" (p. 120).

MAC BEG haltvar
MVR 1 5
JRC 2 DIO? 1 = 1
JRC -1 ONT? 1 = 0
CPY TARGET POS? 1
MOV 1 ${TARGET}
VAR TARGET
MAC END

The macro has the same tasks as the HALT macro.
However, axis 1 is not stopped by pushbutton via the
HLT command; instead the result of the POS? 1
query is copied to the TARGET variable. Then this
variable is used as the target position for the MOV
command. As a result, the axis stays right where it
was. To clean up, TARGET is defined as empty with
the VAR command which deletes the variable.

Start the HALTVAR
macro on the

MAC START haltvar Axis 1 starts to move. It is stopped by switching digital
input line 1 to the high state (e.g., by pushbutton).
Error code 10 is not set because no halt or stop

7 Operation

112 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Action Command Result
controller. command is used.

7.7.7 Macro Example: Joystick Control with Storage of Positions
Task:

Axis 1 is to be controlled with a joystick. Joystick control is to be activated only when the
joystick button is pressed at the same time. By using the buttons of a connected pushbutton
box, in addition up to four positions are to be stored in the controller or approached by the axis.
The LEDs of the pushbutton box should indicate whether the controller is ready to save the
current position and whether it has been saved.

Approach:

The STARTUP, MAINLOOP, TESTJOYB, TESTDION, and MVAX2ST macros are recorded on the
controller. They use the global variables STORE1, STORE2, STORE3, STORE4, COUNTER, and the
local variables 1 and 2.

 INFORMATION
 When macros are recorded on the Controller macros tab in PIMikroMove, the commands MAC

BEG and MAC END must be left out.

Action Command Result

Connect C-170.PB
pushbutton box from PI
to the I/O socket.

- Digital input lines 1 to 4 are switched to high state as
long as the respective button is pressed. The states of
digital output lines 1 to 4 are indicated by the LEDs
which are integrated in the buttons.

Connect C-819.20 or C-
819.30 joystick to the
Joystick socket.

- For commands, the joystick axis connected is
accessible as axis 1 of joystick 1 and the joystick
button is accessible as button 1 of joystick 1.

Switch on servo mode
for axis 1.

SVO 1 1 The servo mode must be switched on, so that axis 1
can be controlled via a joystick.

Start referencing move
for axis 1.

FRF 1 The axis starts a referencing move – here to the
reference switch. After this, absolute axis positions
can be commanded.

Specify which axis is to
be controlled via the
joystick axis.

JAX 1 1 1 Axis 1 is assigned to joystick axis 1 of joystick 1.
Joystick control is not yet active.

Record the STARTUP
macro on the
controller.

MAC BEG startup
CPY STORE1 POS? 1
CPY STORE2 POS? 1
CPY STORE3 POS? 1
CPY STORE4 POS? 1

The macro has the following tasks:
 Initialize variables for storing the position
 Start MAINLOOP macro for the main loop

7 Operation

C-863.12 Mercury Controller MS249E Version: 2.1.0 113

Action Command Result
MAC START MAINLOOP
MAC END

Record the MAINLOOP
macro on the
controller.

MAC BEG mainloop
MAC START TESTJOYB
VAR COUNTER 1
MAC START TESTDION
${COUNTER}
ADD COUNTER
${COUNTER} 1
JRC -2 VAR?
COUNTER < 5
MAC START MAINLOOP
MAC END

The macro has the following tasks:
 Start TESTJOYB macro for joystick control
 Start TESTDION macro successively for all digital

inputs (i.e., every button on the pushbutton box),
using a loop

 Call itself to set up the main loop

Record the TESTJOYB
macro on the
controller.

MAC BEG testjoyb The macro has the following tasks:

MEX JBS? 1 1 = 0  Stop macro execution if joystick button 1 is not
pressed

JON 1 1  Activate joystick 1
DIO 0 15  Switch on all LEDs on the pushbutton box
JRC 6 JBS? 1 1 = 0  Jump forward 6 lines (to JON 1 0), if joystick

button 1 is no longer pressed
DEL 50  Wait 50 ms
DIO 0 0  Switch off all LEDs on the pushbutton box
JRC 3 JBS? 1 1 = 0  Jump forward 3 lines (to JON 1 0), if joystick

button 1 is no longer pressed
DEL 50  Wait additional 50 ms
JRC -6 JBS? 1 1 =
1

 Jump back 6 lines (to DIO 0 15), if joystick button
1 is still pressed

JON 1 0  Deactivate joystick 1
DIO 0 0  Switch all LEDs on the pushbutton box off
MAC END

Record the TESTDION
macro on the
controller.

MAC BEG testdion The macro has the following tasks:

MEX VAR? 0 != 1  Stop macro execution if the number of local
variables given when starting TESTDION is not 1

MEX DIO? $1 = 0  Stop macro execution if the button specified via
local variable 1 on the pushbutton box is no
longer pressed (corresponding input line has the
low state)

7 Operation

114 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Action Command Result
DEL 300  Wait 300 ms
JRC 3 DIO? $1 = 1  If the button is still pressed, jump 3 lines forward

(to DEL 400)

MAC START MVAX2ST
$1

 Start the MVAX2ST macro because the button
was only briefly pressed. The value of the local
variable 1 is also used for local variable 1 in
MVAX2ST. MVAX2ST moves axis 1 to the position
assigned for the button.

MEX DIO? $1 = 0  Stop macro execution if button is no longer
pressed

DEL 400  Wait 400 ms
MEX DIO? $1 = 0  Stop macro execution if button is no longer

pressed
DIO $1 1  Switch the pushbutton box LED on that is

associated with the button pressed to indicate
storing of the current position

WAC DIO? $1 = 0  The macro is executed further only if the button
is no longer pressed

DIO $1 0  Switch LED off
CPY STORE$1 POS? 1  Save the current position of axis 1 in the global

variable designated via local variable 1
MAC END

Record the MVAX2ST
macro on the
controller.

MAC BEG MVAX2ST The macro has the following tasks:

CPY 2 VAR? STORE$1  Get the storage variable designated via local
variable 1 and copies its value to local variable 2

MOV 1 $2  Start motion of axis 1 to the target position
specified via local variable 2

MAC END

Start the STARTUP
macro on the
controller.
Alternative:
If the variables for
storing positions are
not to be initialized,
start the MAINLOOP
macro on the controller
instead.

MAC START startup Joystick control is activated by pressing the joystick
button. When joystick control is activated, the
pushbutton box LEDs flash rapidly and therefore
indicate that the box buttons should not be pressed.
After releasing the joystick button, joystick control is
deactivated and the LEDs switch themselves off. The
pushbutton box can now be used for moving to the
saved positions or for saving the current position.
The respective button on the pushbutton box is
pressed briefly to move the positioner to a stored
position.
To store the current position of the positioner, a

7 Operation

C-863.12 Mercury Controller MS249E Version: 2.1.0 115

Action Command Result
button is pressed on the pushbutton box until the
button LED lights up.

7.7.8 Macro Example: Joystick Control with Change in Velocity

 INFORMATION
 When macros are recorded on the Controller macros tab in PIMikroMove, the commands MAC

BEG and MAC END must be left out.

Action Command Result

Connect C-819.20 or C-
819.30 joystick to the
Joystick socket.

- For commands, the joystick axis connected is
accessible as axis 1 of joystick 1 and the joystick
button is accessible as button 1 of joystick 1.

Switch on servo mode
for axis 1.

SVO 1 1 The servo mode must be switched on, so that axis 1
can be controlled via a joystick.

Start referencing move
for axis 1.

FRF 1 The axis starts a referencing move – here to the
reference switch. After this, absolute axis positions
can be commanded.

Specify which axis is to
be controlled via the
joystick axis.

JAX 1 1 1 Axis 1 is assigned to joystick axis 1 of joystick 1.
Joystick control is not yet active.

Record the JOYVEL
macro on the
controller.

MAC BEG joyvel The macro has the following tasks:

JON 1 1  Activate joystick 1
JRC 3 JBS? 1 1 = 1  If joystick button 1 is pressed, jump 3 lines

forward (to VEL 1 1).

VEL 1 0.5  Maximum velocity during joystick control is 0.5.
JRC -2 JBS? 1 1 =
0

 If joystick button 1 is not pressed, jump 2 lines
back to set up a loop.

VEL 1 1  Maximum velocity during joystick control is 1.
JRC -4 JON? 1 = 1  If joystick 1 is still active, jump 4 lines back to set

up a loop.
MAC END

Start the JOYVEL macro
on the controller.

MAC START joyvel Motion with low velocity:
Move the joystick control lever.
Motion with high velocity:
Keep pushbutton 1 of the joystick pressed and move
the control lever.

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 117

8.1 Notation

The following notation is used to define the GCS syntax and to describe the commands:

<...> Angle brackets indicate an argument of a command, can be an
element identifier or a command-specific parameter.

[…] Square brackets indicate an optional entry.

{…} Curly brackets indicate a repetition of entries, i.e., it is possible
to access more than one element (e.g., several axes) in one
command line.

LF LineFeed (line feed, ASCII character 10), is the default
termination character (character at the end of a command line).

SP Space (ASCII character 32) indicates a space.

"..." Quotation marks indicate that the characters enclosed are
returned or to be entered.

8.2 GCS Syntax for Syntax Version 2.0

A GCS command consists of 3 characters, e.g., CMD. The corresponding query command has a
question mark at the end, e.g., CMD?

Command mnemonic:

 CMD ::= character1 character2 character3 [?]

Exceptions:

 Single-character commands, e.g., fast query commands, consist only of one ASCII
character. The ASCII character is written as combination of # and the character code in
decimal format, e.g., as #24.

 *IDN? (for GPIB compatibility).

The command mnemonic is not case-sensitive. The command mnemonic and all arguments
(e.g., axis identifiers, channel identifiers, parameters, etc.) must be separated from each other
by a space (SP). The command line has to be terminated with a line feed (LF).

8 GCS Commands

8 GCS Commands

118 Version: 2.1.0 MS249E C-863.12 Mercury Controller

 CMD[{{SP}<Argument>}]LF

 CMD?[{{SP}<Argument>}]LF

Exception:

 Single-character commands are not followed by a termination character. However, the
response to a single-character command is followed by a termination character.

The argument <AxisID> is used for the logical axes of the controller. Depending on the
controller, an axis identifier can consist of up to 16 characters. All alphanumeric characters and
the underscore are allowed. Refer to "Commandable Elements" (p. 17) for the identifiers
supported by the C-863.12.

Example 1:

Axis 1 is to be moved to position 10.0. The unit depends on the controller (e.g., µm or mm).

Send: MOVSP1SP10.0LF

More than one command mnemonic per line is not allowed. Several groups of arguments
following a command mnemonic are allowed.

Example 2:

Two axes connected to the same controller are to be moved:

Send: MOVSP1SP17.3SP2SP2.05LF

When a part of a command line cannot be executed, the line is not executed at all.

When all arguments are optional and are not specified, the command is executed for all
possible argument values.

Example 3:

All parameters in the volatile memory are to be reset.

Send: RPALF

Example 4:

The position of all axes is to be queried.

Send: POS?LF

The response syntax is as follows:

 [<Argument>[{SP<Argument>}]"="]<Value>LF

With multi-line replies, the space preceding the termination character is left out of the last line:

 {[<Argument>[{SP<Argument>}]"="]<Value>SPLF}

 [<Argument>[{SP<Argument>}]"="]<Value>LF for the last line!

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 119

The arguments are listed in the response in the same order as in the query command.

Query command:

 CMD?SP<Arg3>SP<Arg1>SP<Arg2>LF

Response to this command:

 <Arg3>"="<Val3>SPLF

 <Arg1>"="<Val1>SPLF

 <Arg2>"="<Val2>LF

Example 5:

Send: TSP?SP2SP1LF

Receive: 2=-1158.4405SPLF

1=+0000.0000LF

 INFORMATION
 With the C-863.12 only a single element per command line can be addressed (e. g. axis or

parameter).
Example:
By sending command line
SEP 100 1 0x32 0
a new value of parameter 0x32 is saved in nonvolatile memory for axis 1,
sending command line
SEP 100 1 0x32 0 1 0x14 1
is not possible, however, because two parameters are to be changed.

If the command supports this, all elements can be addressed by omitting the element
identifier.
Example:
By sending command line
SEP?
all parameters from the nonvolatile memory are queried.

8.3 Target and Sender Address

In principle, the addresses of the target controller and the sender are required in every
command line. This applies even to single-character commands like #4 or to macro recording.
Because only the PC may send command lines to the controllers, its address (0) does not need
to be specified. However, both target and sender address are part of any controller response.
Multiline responses contain the target and sender address in the first line

8 GCS Commands

120 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Example:

In a terminal, e.g., PITerminal, the identification string of a controller with address 2 (here: a C-
863.11) is queried using the *IDN? command.

Send: 2 0 *IDN?

or

Send: 2 *IDN?

The response in either case is:
0 2 (c)2011 Physik Instrumente(PI) Karlsruhe, C-863.11,0,1.2.0.0

Exception:

The target address can be omitted if the target controller has the address 1, even if this
controller is part of a daisy chain. If the target address is not specified when addressing a
controller, the target and sender addresses will also not be specified in the response from the
controller.

Example:

Send: *IDN?

The controller with address 1 (here: a C-863.11) responds with:
(c)2011 Physik Instrumente(PI) Karlsruhe, C-863.11,0,1.2.0.0

Send: 1 *IDN?

The same controller responds with:
0 1 (c)2011 Physik Instrumente(PI) Karlsruhe, C-863.11,0,1.2.0.0

See "Adapting DIP Switch Settings" (p. 53) on how to set the controller address. The controller
address can be in the range of 1 to 16, address 1 is default. The PC always has the address 0.
With the broadcast address 255, all controllers in a daisy chain can be addressed at the same
time, but no responses are sent to the PC.

8.4 Variables

For more flexible programming, the C-863.12 supports variables. While global variables are
always available, local variables are only valid for a specified macro. Typically, variables are used
when working with macros.

Variables are present in volatile memory (RAM) only. The variable values are of the STRING data
type.

The following conventions apply to variable names:

 Variable names may not contain special characters (especially not “$”).

 The maximum number of characters is 8.

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 121

 Names of global variables can consist of characters A to Z and 0 to 9. They must start
with an alphabetic character.

 Names of local variables may not contain alphabetic characters. Possible characters are
0 to 9.

 The variable name can also be specified via the value of another variable.

If the value of a variable is to be used, the notation must be as follows:

 The variable name must be preceded by the dollar sign ($).

 Variable names consisting of multiple characters must be put in braces.

If the variable name consists of a single character, the braces can be left out.

Note that if the braces are left out of variable names consisting of multiple characters, the first
character after the “$” is interpreted as the variable name.

Local variables:

 Local variables can only be used in macros.

 At present, the controller firmware supports three local variables: 0, 1 and 2.

 The values of the local variables 1 and 2 are specified as arguments of the MAC START
or MAC NSTART command when starting the macro.

The command formats are:
MAC START <macroname> [<String1> [<String2>]]

MAC NSTART <macroname> <uint> [<String1> [<String2>]]

<STRING1> and <STRING2> indicate the values for the local variables 1 and 2 used in the
macro. <STRING1> and <STRING2> can be specified directly or via the values of
variables. <uint> defines the number of times the macro is to be run. See the MAC
command (p. 169) description for more information.

 The local variable 0 is read-only. Its value gives the number of arguments (i.e., values of
local variables) set when starting the macro.

 Inside a macro, the values of local variables can be modified using ADD (p. 131), CPY
(p. 136) or VAR (p. 197), and can be deleted with VAR (except for the local variable 0).

 As long as the macro is running, the values of the local variables can be queried with
VAR? 0

VAR? 1

VAR? 2

The queries can be sent inside or outside of the macro.

Global variables:

 Global variables can be used inside and outside of macros.

 The maximum number of global variables is 10.

8 GCS Commands

122 Version: 2.1.0 MS249E C-863.12 Mercury Controller

 Global variables are created and modified using ADD, CPY or VAR. They can be deleted
with VAR.

 The variable values can be queried with VAR?.

8.5 Command Overview

Command Format Description

#4 (p. 128) #4 Request Status Register

#5 (p. 128) #5 Request Motion Status

#7 (p. 129) #7 Request Controller Ready Status

#8 (p. 129) #8 Query If Macro Is Running

#24 (p.
129)

#24 Stop All Axes

*IDN? (p.
130)

*IDN? Get Device Identification

ACC (p.
130)

ACC {<AxisID> <Acceleration>} Set Closed-Loop Acceleration

ACC? (p.
131)

ACC? [{<AxisID>}] Get Closed-Loop Acceleration

ADD (p.
131)

ADD <Variable> <FLOAT1> <FLOAT2> Add and Save To Variable

BRA (p.
133)

BRA {<AxisID> <BrakeState>} Set Brake Activation State

BRA? (p.
134)

BRA? [{<AxisID>}] Get Brake Activation State

CCL (p.
134)

CCL? <Level> [<PSWD>] Set Command Level

CCL? (p.
135)

CCL? Get Command Level

CPY (p.
136)

CPY <Variable> <CMD?> Copy Into Variable

CST? (p.
136)

CST? [{<AxisID>}] Get Assignment Of Stages To Axes

CSV? (p.
137)

CSV? Get Current Syntax Version

CTO (p.
137)

CTO {<TrigOutID> <CTOPam> <Value>} Set Configuration Of Trigger Output

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 123

Command Format Description

CTO? (p.
141)

CTO? [{<TrigOutID> <CTOPam>}] Get Configuration Of Trigger Output

DEC (p.
141)

DEC {<AxisID> <Deceleration>} Set Closed-Loop Deceleration

DEC? (p.
142)

DEC? [{<AxisID>}] Get Closed-Loop Deceleration

DEL (p.
142)

DEL <uint> Delay The Command Interpreter

DFH (p.
142)

DFH [{<AxisID>}] Define Home Position

DFH? (p.
144)

DFH? [{<AxisID>}] Get Home Position Definition

DIO (p.
144)

DIO {<DIOID> <OutputOn>} Set Digital Output Lines

DIO? (p.
145)

DIO? [{<DIOID>}] Get Digital Input Lines

DRC (p.
146)

DRC {<RecTableID> <Source>
<RecOption>}

Set Data Recorder Configuration

DRC? (p.
147)

DRC? [{<RecTableID>}] Get Data Recorder Configuration

DRL? (p.
147)

DRL? [{<RecTableID>}] Get Number Of Recorded Points

DRR? (p.
148)

DRR? [<StartPoint> <NumberOfPoints>
[{<RecTableID>}]]

Get Recorded Data Values

DRT (p.
149)

DRT {<RecTableID> <TriggerSource>
<Value>}

Set Data Recorder Trigger Source

DRT? (p.
150)

DRT? [{<RecTableID>}] Get Data Recorder Trigger Source

ERR? (p.
151)

ERR? Get Error Number

FED (p.
152)

FED {<AxisID> <EdgeID> <Param>} Find Edge

FNL (p.
153)

FNL [{<AxisID>}] Fast Reference Move To Negative
Limit

FPL (p.
154)

FPL [{<AxisID>}] Fast Reference Move To Positive Limit

FRF (p.
155)

FRF [{<AxisID>}] Fast Reference Move To Reference
Switch

8 GCS Commands

124 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Command Format Description

FRF? (p.
156)

FRF? [{<AxisID>}] Get Referencing Result

GOH (p.
156)

GOH [{<AxisID>}] Go To Home Position

HDR? (p.
157)

HDR? Get All Data Recorder Options

HLP? (p.
157)

HLP? Get List of Available Commands

HLT (p.
158)

HLT [{<AxisID>}] Halt Motion Smoothly

HPA? (p.
158)

HPA? Get List Of Available Parameters

HPV? (p.
159)

HPV? Get List Of Possible Parameter Values

JAS? (p.
161)

JAS? [{<JoystickID> <JoystickAxis>}] Query Joystick Axis Status

JAX (p.
161)

JAX <JoystickID> <JoystickAxis> <AxisID> Set Axis Controlled By Joystick

JAX? (p.
162)

JAX? [{<JoystickID> <JoystickAxis>}] Get Axis Controlled By Joystick

JBS? (p.
162)

JBS? [{<JoystickID> <JoystickButton>}] Query Joystick Button Status

JDT (p.
163)

JDT {<JoystickID> <JoystickAxis> <uint>} Set Joystick Default Lookup Table

JLT (p. 164) JLT <JoystickID> <JoystickAxis> <Addr>
<floatn>

Fill Joystick Lookup Table

JLT? (p.
165)

JLT? [<StartPoint> <NumberOfPoints>
[{<JoystickID> <JoystickAxis>}]]

Get Joystick Lookup Table Values

JON (p.
166)

JON {<JoystickID> <uint>} Set Joystick Activation Status

JON? (p.
167)

JON? [{<JoystickID>}] Get Joystick Activation Status

JRC (p.
167)

JRC <Jump> <CMD?> <OP> <Value> Jump Relatively Depending On
Condition

LIM? (p.
168)

LIM? [{<AxisID>}] Indicate Limit Switches

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 125

Command Format Description

MAC (p.
169)

MAC <keyword> {<parameter>}
in particular:
MAC BEG <macro name>
MAC DEF <macro name>
MAC DEF?
MAC DEL <macro name>
MAC END
MAC ERR?
MAC NSTART <macro name> <uint>
[<String1> [<String2>]]
MAC START <macro name> [<String1>
[<String2>]]

Call Macro Function

MAC? (p.
172)

MAC? [<macro name>] List Macros

MAN? (p.
172)

MAN? <CMD> Get Help String For Command

MAT (p.
173)

MAT <Variable> <=> <FLOAT1> <OP>
<FLOAT2>

Calculate And Save To Variable

MEX (p.
174)

MEX <CMD?> <OP> <Value> Stop Macro Execution Due To
Condition

MOV (p.
176)

MOV {<AxisID> <Position>} Set Target Position

MOV? (p.
176)

MOV? [{<AxisID>}] Get Target Position

MVR (p.
177)

MVR {<AxisID> <Distance>} Set Target Relative To Current
Position

ONT? (p.
178)

ONT? [{<AxisID>}] Get On-Target State

POS (p.
179)

POS {<AxisID> <Position>} Set Real Position

POS? (p.
179)

POS? [{<AxisID>}] Get Real Position

RBT (p.
180)

RBT Reboot System

RMC? (p.
180)

RMC? List Running Macros

RON (p.
180)

RON {<AxisID> <ReferenceOn>} Set Reference Mode

RON? (p.
181)

RON? [{<AxisID>}] Get Reference Mode

8 GCS Commands

126 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Command Format Description

RPA (p.
181)

RPA [{<ItemID> <PamID>}] Reset Volatile Memory Parameters

RTR (p.
182)

RTR <RecordTableRate> Set Record Table Rate

RTR? (p.
182)

RTR? Get Record Table Rate

SAI (p.
183)

SAI {<AxisID> <NewIdentifier>} Set Current Axis Identifiers

SAI? (p.
183)

SAI? [ALL] Get List Of Current Axis Identifiers

SEP (p.
183)

SEP <Pswd> {<ItemID> <PamID>
<PamValue>}

Set Nonvolatile Memory Parameters

SEP? (p.
185)

SEP? [{<ItemID> <PamID>}] Get Nonvolatile Memory Parameters

SMO (p.
185)

SMO {<AxisID> <ControlValue>} Set Open-Loop Control Value

SMO? (p.
186)

SMO? [{<AxisID>}] Get Control Value

SPA (p.
187)

SPA {<ItemID> <PamID> <PamValue>} Set Volatile Memory Parameters

SPA? (p.
189)

SPA? [{<ItemID> <PamID>}] Get Volatile Memory Parameters

SRG? (p.
189)

SRG? {<AxisID> <RegisterID>} Query Status Register Value

STE (p.
190)

STE <AxisID> <Amplitude> Start Step And Response
Measurement

STP (p.
191)

STP Stop All Axes

SVO (p.
191)

SVO {<AxisID> <ServoState>} Set Servo Mode

SVO? (p.
192)

SVO? [{<AxisID>}] Get Servo Mode

TAC? (p.
193)

TAC? Tell Analog Channels

TAV? (p.
193)

TAV? [{<AnalogInputID>}] Get Analog Input Voltage

TCV? (p.
194)

TCV? [{AxisID}] Get Commanded Closed-Loop
Velocity

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 127

Command Format Description

TIO? (p.
194)

TIO? Tell Digital I/O Lines

TMN? (p.
194)

TMN? [{<AxisID>}] Get Minimum Commandable Position

TMX? (p.
195)

TMX? [{<AxisID>}] Get Maximum Commandable Position

TNR? (p.
195)

TNR? Get Number Of Record Tables

TRO (p.
195)

TRO {<TrigOutID> <TrigMode>} Set Trigger Output State

TRO? (p.
196)

TRO? [{<TrigOutID>}] Get Trigger Output State

TRS? (p.
196)

TRS? [{<AxisID>}] Indicate Reference Switch

TVI? (p.
197)

TVI? Tell Valid Character Set For Axis
Identifiers

VAR (p.
197)

VAR <Variable> <String> Set Variable Value

VAR? (p.
199)

VAR? [{<Variable>}] Get Variable Value

VEL (p.
199)

VEL {<AxisID> <Velocity>} Set Closed-Loop Velocity

VEL? (p.
200)

VEL? [{<AxisID>}] Get Closed-Loop Velocity

VER? (p.
200)

VER? Get Versions Of Firmware And Drivers

WAC (p.
200)

WAC <CMD?> <OP> <Value> Wait For Condition

WPA (p.
201)

WPA <Pswd> [{<ItemID> <PamID>}] Save Parameters To Nonvolatile
Memory

8 GCS Commands

128 Version: 2.1.0 MS249E C-863.12 Mercury Controller

8.6 Command Descriptions for GCS 2.0

#4 (Request Status Register)

Description: Queries system status information.
Format: #4
Arguments: none
Response: The response is bit-mapped. See below for the individual

codes.
Notes: This command is identical in function to SRG? (p. 189), but

only one character is sent via the interface. Therefore #4
can also be used while the controller is performing time-
consuming tasks.

For the C-863.12, the response is the sum of the following
codes, in hexadecimal format:

Bit 15 14 13 12 11 10 9 8
Descript-
ion

On-target
state

Is
referencing

In
motion

Servo
mode
on

- - - Error
flag

Bit 7 6 5 4 3 2 1 0
Descript-
ion

Digital
in-
put
line 4

Digital
in-
put
line 3

Digital
in-
put
line 2

Digital
in-
put
line 1

- Positiv
e
limit
switch

Ref-
erence
switch

Nega-
tive
limit
switch

Example: Send: #4
Receive: 0x9005
Note: The response is in hexadecimal format. It means that
the axis is on target (on-target state =true), the servo mode
is on, no error has occurred, the states of the digital input
lines 1 to 4 are low, and the positioner is on the positive
side of the reference switch (limit switches are not active;
note that the logic of the signals is inverted in this
example).

#5 (Request Motion Status)

Description: Queries the motion status of the axes.
Format: #5

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 129

Arguments: None
Response: The response <uint> is bit-mapped and returned as the

hexadecimal sum of the following codes:

1=First axis in motion
2=Second axis in motion
4=Third axis in motion
...
0 indicates that all axes have finished moving.

#7 (Request Controller Ready Status)

Description: Queries the controller for ready state (tests if controller is
ready to do a new command).

Note: Use #5 (p. 128) instead of #7 to verify if motion has
finished.

Format: #7
Arguments: None
Response: B1h (ASCII character 177 = "±" in Windows) if controller is

ready

B0h (ASCII character 176 = "°" in Windows) if controller is
not ready
(e.g., executing a referencing move)

Troubleshooting: The response characters may be displayed differently in
non-Western character sets or other operating systems.

#8 (Query if Macro Is Running)

Description: Tests if a macro is running on the controller.
Format: #8
Arguments: None
Response: <uint>=0 no macro is running

<uint>=1 a macro is currently running

#24 (Stop All Axes)

Description: Stops all axes abruptly. See the notes below for further
details.

Sets error code to 10.

8 GCS Commands

130 Version: 2.1.0 MS249E C-863.12 Mercury Controller

This command is identical in function to STP (p. 191), but
only one character is sent via the interface.

Format: #24
Arguments: None
Response: None
Notes: #24 stops all motion caused by motion commands (e.g.,

MOV (p. 176), MVR (p. 177), GOH (p. 156), STE (p. 190),
SMO (p. 185)), commands for referencing (FNL (p. 153),
FPL (p. 154), FRF (p. 155)) and macros (MAC (p. 169)). Also
stops macro running.

After the axes are stopped, their target positions are set to
their current positions.

HLT (p. 158) in contrast to #24 stops motion with specified
deceleration with respect to system inertia.

*IDN? (Get Device Identification)

Description: Reports the device identity number.
Format: *IDN?
Arguments: None
Response: Single-line text terminated with a termination character

(line feed) with controller name, serial number, and
firmware version

ACC (Set Closed-Loop Acceleration)

Description: Sets acceleration of specified axes.

ACC can be changed while the axis is moving.

Format: ACC {<AxisID> <Acceleration>}
Arguments: <AxisID> is one axis of the controller

<Acceleration> is the acceleration value in physical
units/s2.

Response: None
Troubleshooting: Illegal axis identifiers
Notes: The ACC setting only takes effect when the specified axis is

in closed-loop operation (servo mode ON).

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 131

The lowest possible value for <Acceleration> is 0.

ACC changes the value of the Closed-Loop Acceleration
(Phys. Unit/s2) parameter (ID 0xB) in the volatile memory
of the C-863.12. The parameter value can be stored as
default with WPA (p. 201), for details see "Adapting
Settings" (p. 227).

The maximum value that can be set with the ACC
command is specified by the Maximum Closed-Loop
Acceleration (Phys. Unit/s2) parameter (ID 0x4A).

ACC? (Get Closed-Loop Acceleration)

Description: Queries the acceleration value set with ACC (p. 130).

If all arguments are left out, gets the value of all axes set
with ACC.

Format: ACC? [{<AxisID>}]
Arguments: <AxisID> is one axis of the controller
Response: {<AxisID>"="<float> LF}

where

<float> is the acceleration value set with ACC, in physical
units/s2.

ADD (Add and Save to Variable)

Description: Adds two values and saves the result to a variable (p. 120).

The variable is present in volatile memory (RAM) only.

Format: ADD <Variable> <FLOAT1> <FLOAT2>
Arguments: <Variable> is the name of the variable to which the result is

to be saved.

<FLOAT1> is the first summand.

<FLOAT2> is the second summand.

Floating point numbers are expected for the summands.
They can be specified directly or via the value of a variable.

Response: None

8 GCS Commands

132 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Notes: Local variables can be set using ADD in macros only.
Example 1: Value $B is added to value $A, and the result is saved to

variable C:

ADD C $A $B

Example 2: The name of the variable where the result is to be copied is
specified via the value of another variable:

Send: VAR?
Receive:
A=468
B=123
3Z=WORKS

Send: ADD A${3Z} $A $B
Send: VAR?
Receive:
A=468
B=123
AWORKS=591
3Z=WORKS

Send: ADD ${3Z} $A $B
Send: VAR?
Receive:
A=468
B=123
AWORKS=591
WORKS=591
3Z=WORKS

Example 3: The macros below can be used to create a "flashing light"
with LEDs that are connected to the digital output lines of
the controller. $1 and $2 are values of local variables and
must be specified as arguments of MAC START or MAC
NSTART command when starting the macros (see below).

DIO 0 <bitmask>: Sets the output channels according to
<bitmask>. For example, "DIO 0 5" activates channels 1 and
3 and deactivates all other channels (5 is 0000 0101 in
binary notation).

To implement the "flashing light", do the following steps:

1. Write the "STEPS" macro:

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 133

MAC BEG STEPS
DIO 0 $1
ADD 1 $1 1
DEL $2
JRC -3 VAR? 1 <= 15
ADD 1 $1 -1
DIO 0 $1
DEL $2
JRC -3 VAR? 1 > 0
MAC END

 2. Write the "TEST" macro:
MAC BEG TEST
MAC START STEPS 0 $1
ADD 1 $1 10
JRC -2 VAR? 1 < 110
VAR 1 10
ADD 2 $2 -1
JRC -5 VAR? 2 > 0
MAC END

 3. Start the TEST macro with arguments that define the
variable values $1 and $2:
MAC START Test 10 50

 Meaning of the variables here:

$1: Delay in ms between each step in the STEPS macro. The
value is incremented by 10 by the TEST macro until it
reaches 110.

$2: Number of repetitions of the whole "flashing light"
procedure.

BRA (Set Brake Activation State)

Description: Activates/deactivates brake for specified axes.
Format: BRA {<AxisID> <BrakeState>}
Arguments: <AxisID> is one axis of the controller

<BrakeState> can have the following values:
0 = Brake deactivated
1 = Brake activated

Response: None
Troubleshooting: Illegal axis identifier
Notes: The brake can only be used if parameter 0x1A (Has Brake?)

8 GCS Commands

134 Version: 2.1.0 MS249E C-863.12 Mercury Controller

has the value 1 ("yes").
If parameter 0x1A (Has Brake?) has the value 1 ("yes"), the
following applies:
 The brake can be activated or deactivated with BRA

only if the servo mode is switched off. Secure the
positioner against moving unintentionally before you
deactivate the brake before you deactivate the brake
with BRA!

 Setting the servo mode with SVO (p. 191) influences
the activation state of the brake:
− Switching servo mode on deactivates the brake.
− Switching servo mode off activates the brake.

 If a motion error occurs (p. 75), the servo mode is
switched off and the brake is activated.

If the integrated brake driver of the C-863.12 is to be used,
parameter 0x3094 (Internal Brake) must also have the
value 1. Refer the descriptions in "Parameter Overview" (p.
236) for further information.

BRA? (Get Brake Activation State)

Description: Gets brake activation state of specified axes.

If all arguments are left out, gets state of all axes.

Format: BRA? [{<AxisID>}]
Arguments: <AxisID> is one axis of the controller
Response: {<AxisID>"="<BrakeState> LF}

where

<BrakeState> is the current brake activation state of the
axis:
0 = Brake deactivated
1 = Brake activated

Troubleshooting: Illegal axis identifier

CCL (Set Command Level)

Description: Changes the active "command level" and therefore
determines the availability of commands and write access
to system parameters.

Format: CCL <Level> [<PSWD>]
Arguments: <Level> is a command level of the controller

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 135

<PSWD> is the password required for changing to the
appropriate command level

The following command levels and passwords apply:

Level = 0 is the default setting, all commands provided for
"normal" users are available, read access to all parameters,
no password required.

Level = 1 adds additional commands and write access to
level-1 parameters (commands and parameters from level
0 are included). The password required is "advanced".

Level > 1 is only intended for PI service personnel. Users
cannot change to a level > 1. Contact the customer service
department (p. 253) if you have problems with the
parameters for command level 2 or higher.

Response: none
Troubleshooting: Invalid password
Notes: With the C-863.12, the command levels only determine the

write permission for the parameters. The availability of the
commands of the C-863.12 is independent of the active
command level.

HPA? (p. 158) lists the parameters including the
information on which command level allows write access
to them. For further information on using parameters, see
"Adapting Settings" (p. 227).

After controller switch-on or reboot, the active command
level is always level 0.

CCL? (Get Command Level)

Description: Get the active "command level".
Format: CCL?
Arguments: none
Response: <Level> is the currently active command level; uint.
Notes: <Level> should be 0 or 1.

<Level> = 0 is the default setting, write access is specified
for level 0 parameters, read access is specified for all
parameters

<Level> = 1 allows write access for level 1 parameters

8 GCS Commands

136 Version: 2.1.0 MS249E C-863.12 Mercury Controller

(parameters from level 0 are included).

CPY (Copy Into Variable)

Description: Copies a command response to a variable (p. 120).

The variable is present in volatile memory (RAM) only.

Format: CPY <Variable> <CMD?>
Arguments: <Variable> is the name of the variable to which the

command response is to be copied.

<CMD?> is one query command in its usual notation. The
response has to be a single value and not more.

Response: None
Notes: Local variables can be set using CPY in macros only.
Example 1: Using the following macro, it is possible to connect through

the digital input and output lines of the controller. 1 is a
local variable whose value must be specified as argument
of the MAC START or MAC NSTART command when
starting the macro.

Write the "connect" macro:
MAC BEG connect
CPY 1 DIO? 0
DIO 0 $1
MAC START CONNECT
MAC END

Example 2: It is possible to copy the value of one variable (e.g.,
SOURCE) to another variable (e.g., TARGET):

CPY TARGET VAR? SOURCE

CST? (Get Assignment Of Stages To Axes)

Description: Returns the name of the connected positioner type for the
queried axis.

Format: CST? [{<AxisID>}]
Arguments: <AxisID> is one axis of the controller
Response: {<AxisID>"="<string> LF}

where

<string> is the name of the positioner type assigned to the

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 137

axis.
Notes: The positioner name is read from the Stage Name

parameter (ID 0x3C) whose factory default value is
"DEFAULT_STAGE". You can set the parameter value to the
name of your positioner with SPA (p. 187) or SEP (p. 183).
You can find details in the parameter overview (p. 236).

CSV? (Get Current Syntax Version)

Description: Queries the GCS syntax version used in the firmware.
Format: CSV?
Arguments: None
Response: The current GCS syntax version
Notes: 1.0 (for GCS 1.0) or 2.0 (for GCS 2.0) are possible

responses.

CTO (Set Configuration Of Trigger Output)

Description: Configures the trigger output conditions for the specified
digital output line.

Format: CTO {<TrigOutID> <CTOPam> <Value>}
Arguments: <TrigOutID> is one digital output line of the controller, see

below for details.

<CTOPam> is the CTO parameter ID in decimal format, see
below for the available IDs.

<Value> is the value that the CTO parameter is set to, see
below.

Response: None
Notes: The trigger output conditions will become active when

enabled with TRO (p. 195). Do not use DIO (p. 144) on
digital output lines where the trigger output is activated by
TRO.

The CTO settings are lost when you power down or reboot
the C-863.12. They can be easily maintained by saving
them in a macro.

Output
lines and trigger
conditions
available:

<TrigOutID> corresponds to digital output lines 1 to 4, IDs =
1 to 4; see "I/O" (p. 260).

<CTOPam> parameter IDs available for C-863.12:
1 = TriggerStep

8 GCS Commands

138 Version: 2.1.0 MS249E C-863.12 Mercury Controller

2 = Axis
3 = TriggerMode
7 = Polarity
8 = StartThreshold
9 = StopThreshold
10 = TriggerPosition

<Value> available for the appropriate <CTOPam> ID:

for TriggerStep: Distance

for Axis: The identifier of the axis to be connected to the
digital output line. Irrelevant for the MotionError trigger
mode.

for TriggerMode (default value is 0):

  0 = PositionDistance;
a trigger pulse is written whenever the axis has
covered the TriggerStep distance (<CTOPam> ID 1).
Optionally, values for StartThreshold and
StopThreshold (<CTOPam> IDs 8 and 9) can be defined
to activate the trigger output for a limited position
range and a certain direction of motion only (negative
or positive; Note: If the motion direction is reversed
before the axis position has reached the stop
threshold, trigger pulses will continue to be
generated). When StartThreshold and StopThreshold
are set to the same value, they will not be used.

  2 = OnTarget;
the on-target state of the selected axis is transferred to
the selected digital output line (this state can also be
read with the ONT? command).

  5 = MotionError;
the selected digital output line becomes active when a
motion error occurs. The line will stay active until the
error code is reset to 0 (by a query).

  6 = InMotion;
the selected digital output line is active as long as the
selected axis is in motion (the motion state can also be
read with commands, e.g. SRG? or #5).

  7 = Position+Offset;
the first trigger pulse is written when the axis has
reached the position specified by TriggerPosition
(<CTOPam> ID 10). The next trigger pulses are written
each time the axis position equals the sum of the last
valid trigger position and the distance specified by
TriggerStep (<CTOPam> ID 1). Trigger output ends

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 139

when the axis position exceeds the value specified by
StopThreshold (<CTOPam> ID 9). The sign of the
TriggerStep value determines the direction of motion
in which trigger pulses are to be output. Trigger
processing is done by the DSP of the C-863.12.

 8 = SinglePosition;
the selected digital output line is active when the axis
position has reached or exceeded the position
specified by TriggerPosition (<CTOPam> ID 10).

 for Polarity (default value is 1): sets the signal polarity for
the digital output line
0 = Active Low
1 = Active High

for StartThreshold/StopThreshold: position value;
if used for the PositionDistance trigger mode, both
thresholds must be set in order to determine the position
range and the direction of motion for trigger output;
StopThreshold is used as the stop condition for
Position+Offset trigger mode

for TriggerPosition: position value;
if used in the Position+Offset trigger mode, the first trigger
pulse is output at this position;
if used in the SinglePosition trigger mode, the output line is
active when this position is reached or exceeded

For application examples and further details see "Digital
Output Signals" (p. 78) and the lines below.

Example 1: A pulse is to be generated on digital output line 1 (ID 1)
whenever axis 1 has covered a distance of 0.05 µm. The
following parameters must be set:

TrigOutID = 1
Axis = 1
TriggerMode = 0
TriggerStep = 0.05
Send: CTO 1 2 1
Send: CTO 1 3 0
Send: CTO 1 1 0.00005

Example 2: In this example, digital output line 1 is to be set from low
to high when axis A starts to move. The following
parameters must be set:
TrigOutID = 1
Axis = A (axis identifier was changed with SAI)
TriggerMode = 6

8 GCS Commands

140 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Polarity = Active High
So you have to send:
CTO 1 2 A
CTO 1 3 6
CTO 1 7 1

Example 3: L-509.1xxxxx (travel range: 26 mm) is connected to axis 1.
The reference position of the L-509.1xxxxx is 13 mm.
Starting from its reference position, the axis is to be moved
alternating forwards and backwards; trigger pulses are to
be output with the Position+Offset trigger mode for both
directions of motion in a range of 1 mm. For that purpose,
two macros are written to the controller. Macro TRIGREF
initializes the controller and could also be defined as
startup macro, while macro TRIGGER starts motion and
therefore trigger output. Write the macros as shown
below. Further details about macros see "Working with
Macros" (p. 101).

Make sure that the velocity for the axis matches the CTO
setting for the distance. Recommended value:
maximum velocity = distance * 20 kHz / 2
where 20 kHz is the frequency of the C-863.12 servo cycle.

A trigger signal frequency of 1 kHz results at a velocity of
20 mm/s.

 Record a macro named TRIGREF with the following

contents:
CTO 1 3 7
SVO 1 1
FRF
TRO 1 1
MAC START TRIGGER
 Record a macro named TRIGGER with the following

contents:
CTO 1 1 0.02
CTO 1 9 15
CTO 1 10 14
DEL 1000
DRT 0 2 0
MOV 1 15.01
WAC POS? 1 > 14.8
MEX CTO? 1 10 < 13.9
CTO 1 1 -0.02
CTO 1 9 14
CTO 1 10 15

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 141

DEL 1000
MOV 1 13.99
WAC POS? 1 < 14
MEX CTO? 1 10 > 14.1
MAC START TRIGGER

CTO? (Get Configuration Of Trigger Output)

Description: Queries the values set for specified trigger output lines and
parameters.

Format: CTO? [{<TrigOutID> <CTOPam>}]
Arguments: <TrigOutID>: is a digital output line of the controller; see

CTO.

<CTOPam>: parameter ID; see CTO.

If all arguments are left out, the response contains the
values for all parameters and all output lines.

Response: {<TrigOutID> <CTOPam>"="<Value> LF}

For <Value> see CTO.

DEC (Set Closed-Loop Deceleration)

Description: Sets deceleration of specified axes.

DEC can be changed while the axis is in motion.

Format: DEC {<AxisID> <Deceleration>}
Arguments: <AxisID> is one axis of the controller.

<Deceleration> is the deceleration value in physical
units/s2.

Response: None
Troubleshooting: Illegal axis identifiers
Notes: The DEC setting only takes effect when the specified axis is

in closed-loop operation (servo mode ON).

The lowest possible value for <Deceleration> is 0.

DEC changes the value of the Closed Loop Deceleration
(Phys. Unit/s2) parameter (ID 0xC) in the volatile memory
of the C-863.12. The parameter value can be stored as
default with WPA (p. 201), for details see "Adapting

8 GCS Commands

142 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Settings" (p. 227).

The maximum value that can be set with the DEC
command is specified by the Maximum Closed-Loop
Deceleration (Phys. Unit/s2) parameter (ID 0x4B).

DEC? (Get Closed-Loop Deceleration)

Description: Queries the deceleration value set with DEC (p. 141).

If no arguments are specified, queries the value of all axes
set with DEC.

Format: DEC? [{<AxisID>}]
Arguments: <AxisID> is one axis of the controller.
Response: {<AxisID>"="<float> LF}

where

<float> is the deceleration value set with DEC, in physical
units/s2.

DEL (Delay the Command Interpreter)

Description: Delays <uint> milliseconds.
Format: DEL <uint>
Arguments: <uint> is the delay value in milliseconds.
Response: None
Notes: DEL can only be used in macros. Do not mistake MAC DEL

(deletes macros) for DEL (delays).
Further information can be found in the description of the
MAC command (p. 169) and in the "Controller Macros" (p.
99) section.

DFH (Define Home Position)

Description: Redefines the zero position of the specified axis by setting
the position value to zero at the current position.

If no arguments are specified, DFH defines the zero
position of all axes.

Format: DFH [{<AxisID>}]

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 143

Arguments: <AxisID> is one axis of the controller.
Response: none
Troubleshooting: Illegal axis identifier
Notes: DFH sets the current position of the axis to zero and saves

the position value which was valid when the command
was called as offset in the volatile memory. By adding this
offset to the response, the output values of the following
commands are adapted to the new zero position:

 POS? (p. 179) (Get the current position)
 TMN? (p. 194) (Get the minimum commandable

position)
 TMX? (p. 195) (Get the maximum commandable

position)

DFH does not change the values of the parameters for the
definition of travel range and soft limits (p. 31).

The offset is reset to zero in the following cases:
 When switching on and rebooting the C-863.12: For

all axes
 During referencing: For the affected axis

Example: Send: MOV 1 9.87
Send: POS? 1
Receive: 1=9.8700005
Send: DFH? 1
Receive: 1=0.0000000
Send: TMN? 1
Receive: 1=0.0000000
Send: TMX? 1
Receive: 1=14.9999982
Note: Axis 1 is moved to absolute position 9.87 mm.
Finally, the current axis position (with POS?), the current
offset value (with DFH?), and the minimum and maximum
commandable position (with TMN? and TMX?) are
queried.
Send: DFH 1
Send: POS? 1
Receive: 1=0.0000000
Send: DFH? 1
Receive: 1=9.8700005
Send: TMN? 1
Receive: 1=-9.8700005

8 GCS Commands

144 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Send: TMX? 1
Receive: 1=5.1299978
Note: The axis has not moved. The current axis position
was defined as new zero position using DFH. Therefore,
the offset value of axis 1 is 9.87 mm. The values for the
minimum and maximum commandable position were
adapted to the new zero position by adding the offset.

DFH? (Get Home Position Definition)

Description: Queries the position value that is currently used as the
offset for the specified axis to move the zero position.

If no arguments are specified, queries the position value of
all axes.

Format: DFH? [{<AxisID>}]
Arguments: <AxisID> is one axis of the controller
Response: {<AxisID>"="<PositionOffset> LF}

where

<PositionOffset> is the axis position that was valid at the
time the last DFH command was processed. This position
value is used internally as offset for the calculation of the
current axis position.

Troubleshooting: Illegal axis identifier
Notes: The axis position that was valid when the last DFH

command was processed, is available in the volatile
memory as an offset. The offset is reset to zero in the
following cases:
 When switching on and rebooting the C-863.12: For all

axes
 During referencing: For the affected axis

See DFH for an example.

DIO (Set Digital Output Line)

Description: Switches the specified digital output line(s) to specified
state(s).

Use TIO? (p. 194) to get the number of installed digital I/O
lines.

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 145

Format: DIO {<DIOID> <OutputOn>}
Arguments: <DIOID> is one digital output line of the controller, see

below for details.

<OutputOn> is the state of the digital output line, see
below for details.

Response: none
Notes: You can use the DIO command to activate/deactivate the

Output 1 to Output 4 lines on the I/O socket (p. 260). The
C-863.12 allows you to either set a single line per DIO
command, or all lines at once.

The <DIOID> identifiers to use for the lines are 1 to 4. With
the identifier 0, all lines are set according to a bit pattern
specified by <OutputOn>.

If <OutputOn>=1 the line is set to HIGH/ON, if
<OutputOn>=0 it is set to LOW/OFF.
Do not use DIO on output lines for which the trigger output
is activated with TRO (p. 195).

DIO? (Get Digital Input Lines)

Description: Queries the states of the specified digital input lines.

Use TIO? (p. 194) to query the number of available digital
I/O lines.

Format: DIO? [{<DIOID>}]
Arguments: <DIOID> is the identifier of the digital input line, see below

for details.
Response: {<DIOID>"="<InputOn> LF}

where

<InputOn> specifies the state of the digital input line, see
below for details.

Notes: You can use the DIO? command to read digital input lines 1
to 4 on the I/O socket directly (p. 260).

The <DIOID> identifiers to use for the lines are 1 to 4. If the
identifier is left out or 0, all lines are queried.

If <InputOn>=0, the digital input is LOW/OFF; if
<InputOn>=1, the digital input is HIGH/ON. If <DIOID> is 0,
<InputOn> is a bit pattern which gives the states of all lines

8 GCS Commands

146 Version: 2.1.0 MS249E C-863.12 Mercury Controller

in hexadecimal format.

DRC (Set Data Recorder Configuration)

Description: Determines the data source to be used and the type of
data to be recorded (record option) for the data recorder
table specified.

Format: DRC {<RecTableID> <Source> <RecOption>}
Arguments: <RecTableID> is one data recorder table of the controller,

see below.

<Source> is the ID of the data source, for example, an axis
or channel of the controller. The required source depends
on the selected record option.

<RecOption> is the type of data to be recorded (record
option).

Refer to the following list of available record options and
the corresponding data sources for details

Response: None
Notes: The C-863.12 has 4 data recorder tables with 1024 points

per table.

With HDR? (p. 157), you will obtain a list of all available
record and trigger options and additional information on
the data recording. The number of available data recorder
tables can be read with TNR? (p. 195).

Refer to "Data Recorder" (p. 76) for further information.

Recording
options available
with the
corresponding
data sources:

 0=Nothing is recorded
Data source is the axis:
 1=Commanded position of axis
 2=Actual position of axis
 3=Position error of axis
 70=Commanded velocity of axis
 71=Commanded acceleration of axis
 73=Motor output of axis (dimensionless control value)
 74=Kp of axis
 75=Ki of axis
 76=Kd of axis
 77=Kv of axis

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 147

 80=Signal status register of axis
 90=active parameterset (only relevant if the controller

supports several groups of servo control parameters)
Data source is the analog input:
 81=Analog input (channel = 1 - 4)
Data source is a motor output (see pin assignment (p.
259)):
 100=Current Phase A [mA]
 101=Current Phase B [mA]

 Note: The analog inputs for the record option 81 can be
the Input 1 to Input 4 lines of the I/O socket (p. 260). Use
the identifiers 1 to 4 for these data sources.
Data source identifiers 5 and 6 refer to the inputs for the
joystick's axis and button:
5 = Axis 1 of the joystick
6 = Button 1 of the joystick

DRC? (Get Data Recorder Configuration)

Description: Queries the settings for the data to be recorded.
Format: DRC? [{<RecTableID>}]
Arguments: <RecTableID>: is a data recorder table of the controller; if

this entry is not specified, the response will contain the
settings for all tables.

Response: The current DRC settings:

{<RecTableID>"="<Source> <RecOption> LF}

where

<Source>: is the data source, for example, an axis or a
channel of the controller. The source type depends on the
record option.

<RecOption>: is the type of data to be recorded (record
option).

The available record options can be queried with HDR? (p.
157).

DRL? (Get Number of Recorded Points)

Description: Reads the number of points comprised by the last

8 GCS Commands

148 Version: 2.1.0 MS249E C-863.12 Mercury Controller

recording.
Format: DRL? [{<RecTableID>}]
Arguments: <RecTableID> is one data recorder table of the controller
Response: {<RecTableID>"="<uint> LF}

where

<uint> specifies the number of points recorded with the
last recording

Notes: The number of points is reset to zero for a data recorder
table when changing its configuration with DRC (p. 146).

DRR? (Get Recorded Data Values)

Description: Queries the last recorded data.

Querying can take some time depending on the number of
points to be read!

It is possible to read the data while recording is still in
progress.

Format: DRR? [<StartPoint> <NumberOfPoints> [{<RecTableID>}]]
Arguments: <StartPoint> is the first point to be read from the data

recorder table, starts with index 1.

<NumberOfPoints> is the number of points to be read per
table.

<RecTableID> is one data recorder table of the controller.

Response: For the recorded data in GCS array format, refer to the
separate manual for the GCS array, SM146E, and the
example below.

Notes: If <RecTableID> is not specified, the data is read from all
tables with a record option not equal to zero.

With HDR? (p. 157), you will obtain a list of all available
recording and triggering options as well as additional
information on data recording.

Refer to the description of the DRC command (p. 146) as
well as "Data Recorder" (p. 76) for further information.

Example: rtr?
10
drr? 1 20

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 149

REM C-863.12

VERSION = 1
TYPE = 1
SEPARATOR = 32
DIM = 2
SAMPLE_TIME = 0.000500
NDATA = 20

NAME0 = Actual Position of Axis
AXIS:1
NAME1 = Position Error of Axis AXIS:1

END_HEADER
5.00000 0.00000
4.99998 0.00002
5.00000 0.00000
5.00000 0.00000
5.00000 0.00000
5.00000 0.00000
5.00000 0.00000
4.99998 0.00002
5.00000 0.00000
4.99998 0.00002
5.00000 0.00000
5.00000 0.00000
5.00000 0.00000
5.00000 0.00000
4.99998 0.00002
5.00000 0.00000
4.99998 0.00002
4.99998 0.00002
5.00000 0.00002
4.99998 0.00004

DRT (Set Data Recorder Trigger Source)

Description: Defines a trigger source for the specified data recorder
table.

Format: DRT <RecTableID> <TriggerSource> <Value>
Arguments: <RecTableID> is one data recorder table of the controller.

See below for details.

8 GCS Commands

150 Version: 2.1.0 MS249E C-863.12 Mercury Controller

<TriggerSource> ID of the trigger source, see below for a
list of available options.

<Value> depends on the trigger source, can be a dummy,
see below.

Response: none
Notes: At present, only 0 is valid for <RecTableID>; this means

that the specified trigger source is set for all data recorder
tables that have a record option that is not zero.

Irrespective of the trigger option set, data recording is
always triggered when step response measuring is done
with STE (p. 190).

With HDR? (p. 157), you will obtain a list of all available
record and trigger options and additional information on
the data recording.

For further information, see the description of the DRC
command (p. 146) as well as "Data Recorder" (p. 76).

Available trigger
options:

0 = default setting
Data recording is triggered by STE; <Value> must be a
dummy.

1 = any command changing target position
e.g., MVR (p. 177), MOV (p. 176); <Value> must be a
dummy.

2 = next command
resets trigger after execution; <Value> must be a dummy.

6 = any command changing target position, reset trigger
after execution
e.g., MVR, MOV; resets trigger after execution; <Value>
must be a dummy.

DRT? (Get Data Recorder Trigger Source)

Description: Queries the trigger source for the data recorder tables.
Format: DRT? [{<RecTableID>}]
Arguments: <RecTableID> is one data recorder table of the controller.
Response: {<RecTableID>"="<TriggerSource> <Value> LF}

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 151

where

<TriggerSource> is the identifier of the trigger source.

<Value> depends on the trigger source.

Further information can be found in the description of the
DRT command (p. 149).

Notes: Because all data record tables of the C-863.12 have the
same trigger source, the DRT? response is specified as a
single line of the form

0=<TriggerSource> <Value>

ERR? (Get Error Number)

Description: Get error code <int> of the last occurred error and reset
the error to 0.

Only the last error is buffered. You should therefore call
ERR? after each command.

The error codes and their descriptions are listed in "Error
Codes" (p. 203).

Format: ERR?
Arguments: None
Response: The error code of the last error that occurred (integer).
Troubleshooting: Communication breakdown
Notes: In the case of simultaneous access to the controller by

several instances, the error code is only returned to the
first instance that sent the ERR? command. Because the
error is reset to 0 by the query, the error is not visible for
any further querying instance.
 If possible, access the controller with one instance

only.
 If incorrect system behavior does not cause the

controller to send an error code, check whether the
error code is queried regularly in the background by a
macro, script or the PC software (e.g., PIMikroMove).

If the cause of an error continues, the corresponding error
code is immediately set again after a query with ERR?.

8 GCS Commands

152 Version: 2.1.0 MS249E C-863.12 Mercury Controller

FED (Find Edge)

Description: Moves the specified axis to a specified signal edge.

FED does not set a certain position value at the selected
edge (in contrast to the FNL (p. 153), FPL (p. 154), and FRF
(p. 155) commands for referencing), i.e., the axis is not
"referenced" after using FED.

If multiple axes are specified in the command, they are
moved synchronously.

Format: FED {<AxisID> <EdgeID> <Param>}
Arguments: <AxisID> is one axis of the controller.

<EdgeID> is the type of edge the axis has to move to. See
below for available edge types.

<Param> depends on the selected edge and qualifies it.
See below for details.

Response: None
Troubleshooting: Illegal axis identifier; limit switches and/or reference

switch are disabled (see below); SVO? (p. 192) responds
with the value 0.

Notes: Servo mode must be switched on with SVO (p. 191) for the
commanded axis prior to using this command (closed-loop
operation).
The C-863.12 firmware detects the presence or absence of
reference switch and limit switches using parameters (ID
0x14 for reference switch; ID 0x32 for limit switches). The
C-863.12 activates or deactivates FED motion to the
appropriate signal edges according to the values of those
parameters. Adapt the parameter values to your hardware
using SPA (p. 187) or SEP (p. 183). See "Parameter
Overview" (p. 236) for more information.
You can use the digital input lines instead of the switches
as source of the switch signals for FED. For further
information see "Digital Input Signals" (p. 86).
FED can be used to measure the physical travel range of a
new mechanics and therefore to identify the values for the
corresponding parameters: the distance from negative to
positive limit switch, the distance between the negative
limit switch and the reference switch (parameter ID 0x17),
and the distance between reference switch and positive
limit switch (parameter ID 0x2F). For further information
see "Travel Range and Soft Limits" (p. 31).

The motion can be stopped by #24 (p. 129), STP (p. 191)
and HLT (p. 158).

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 153

Motion commands like FED are not allowed when the
joystick is active for the axis. For further information see
"Joystick Control" (p. 91).

Available edge
types and
parameters:

The following edge types with their parameter settings are
available:

1 = negative limit switch, <Param> must be 0
2 = positive limit switch, <Param> must be 0
3 = reference switch, <Param> must be 0

FNL (Fast Reference Move To Negative Limit)

Description: Performs a referencing move

Moves the specified axis to the negative physical limit of
its travel range and sets the current position to a defined
value. See below for details.

If multiple axes are specified in the command, they are
moved synchronously.

Format: FNL [{<AxisID>}]
Arguments: <AxisID> is a controller's axis, all axes are affected if not

specified.
Response: None
Troubleshooting: Illegal axis identifier
Notes: Servo mode must be switched on with SVO (p. 191) for the

commanded axis prior to using this command (closed-loop
operation).
If the referencing move was successful, absolute motion
will then be possible in closed-loop operation.

 The negative physical limit of the travel range is
represented by the negative limit switch of the positioner.
The difference in the values of the parameters 0x16 and
0x17 is set as the current position when the axis is at the
negative limit switch.

You can use a digital input instead of the negative limit
switch as source of the negative limit switch signal for FNL.
Refer to "Digital Input Signals" (p. 86) for further
information.

The motion can be stopped by #24 (p. 129), STP (p. 191)
and HLT (p. 158).

Use FRF? (p. 156) to check whether the referencing move

8 GCS Commands

154 Version: 2.1.0 MS249E C-863.12 Mercury Controller

was successful.

For best repeatability, referencing must always be done in
the same way.

If soft limits (parameters 0x15 and 0x30) are used to
reduce the travel range, the limit switches cannot be used
for referencing moves.

Refer to "Referencing" (p. 34) and "Travel Range and Soft
Limits" (p. 31) for further information.

FPL (Fast Reference Move To Positive Limit)

Description: Starts a referencing move

Moves the specified axis to the positive physical limit of its
travel range and sets the current position to a defined
value. See below for details.

If multiple axes are specified in the command, they are
moved synchronously.

Format: FPL [{<AxisID>}]
Arguments: <AxisID> is one axis of the controller, if not specified, all

axes are involved.
Response: none
Troubleshooting: Illegal axis identifier
Notes: Servo mode must be switched on with SVO (p. 191) for the

commanded axis prior to using this command (closed-loop
operation).
If the referencing move was successful, absolute motion
will then be possible in closed-loop operation.

 The positive physical limit of the travel range is
represented by the positive limit switch of the positioner.
The sum of the values of the parameters 0x16 and 0x2F is
set as the current position when the axis is at the positive
limit switch.

You can use a digital input instead of the positive limit
switch as source of the positive limit switch signal for FPL.
For further information, see "Digital Input Signals" (p. 86).

Motion can be stopped by #24 (p. 129), STP (p. 191) and
HLT (p. 158).

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 155

Use FRF? (p. 156) to check whether the referencing move
was successful.

For best repeatability, referencing must always be done in
the same way.

If soft limits (parameters 0x15 and 0x30) are used to
reduce the travel range, the limit switches cannot be used
for referencing moves.

For further information, see "Referencing" (p. 34) and
"Travel Range and Soft Limits" (p. 31).

FRF (Fast Reference Move To Reference Switch)

Description: Starts a referencing move.

Moves the specified axis to the reference switch and sets
the current position to a defined value. See below for
details.

If multiple axes are specified in the command, they are
started simultaneously.

Format: FRF [{<AxisID>}]
Arguments: <AxisID> is a controller's axis, all axes are affected if not

specified.
Response: None
Troubleshooting: Illegal axis identifier
Notes: Servo mode must be switched on with SVO (p. 191) for the

commanded axis prior to using this command (closed-loop
operation).
If the referencing move was successful, absolute motion
will then be possible in closed-loop operation.

 The value of the parameter 0x16 is set as the current
position when the axis is at the reference switch.

You can use a digital input instead of the reference switch
as source of the reference signal for the FRF command. For
further information, see "Digital Input Signals" (p. 86).

The motion can be stopped by #24 (p. 129), STP (p. 191)
and HLT (p. 158).

Use FRF? (p. 156) to check whether the referencing move
was successful.

8 GCS Commands

156 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Use FNL (p. 153) or FPL (p. 154) instead of FRF (p. 155) to
do a referencing move for an axis that has no reference
switch but limit switches.

For best repeatability, referencing must always be done in
the same way. The FRF command always approaches the
reference switch from the same side, no matter where the
axis is when the command is called.

For further information, see "Travel Range and Soft Limits"
(p. 31).

FRF? (Get Referencing Result)

Description: Queries whether the specified axis is referenced or not.
Format: FRF? [{<AxisID>}]
Arguments: <AxisID> is one axis of the controller.
Response: {<AxisID>"="<uint> LF}

where

<uint> indicates whether the axis has been successfully
referenced (=1) or not (=0).

Troubleshooting: Illegal axis identifier
Notes: An axis is considered as "referenced" when the current

position value is set to a known position. This is the case
when a referencing move was successfully done with FNL
(p. 153), FPL (p. 154) or FRF (p. 155) or when the position
was set directly with POS (p. 179) (depending on the
referencing method selected with RON (p. 180)).

GOH (Go To Home Position)

Description: Moves the specified axis to the zero position.

GOH [{<AxisID>}]
is the same as
MOV {<AxisID> 0}

The motion can be stopped by #24 (p. 129), STP (p. 191),
and HLT (p. 158).

Format: GOH [{<AxisID>}]

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 157

Arguments: <AxisID>: Is one axis of the controller; if not specified, all
axes are affected.

Response: None
Troubleshooting: Illegal axis identifier
Notes: Servo mode must be switched on for the commanded axis

prior to using this command (closed-loop operation).

HDR? (Get All Data Recorder Options)

Description: Lists a help string which contains all information available
on data recording (record options and trigger options,
information on additional parameters and commands
concerning data recording).

Format: HDR?
Arguments: None
Response #RecordOptions

{<RecOption>"="<DescriptionString>[of <Channel>]}

#TriggerOptions
[{<TriggerOption>"="<DescriptionString>}]

#Parameters to be set with SPA
[{<ParameterID>"="<DescriptionString>}]

#Additional information
[{<Command description>"("<Command>")"}]

#Sources for Record Options
[{<RecOption>"="<Source>}]

end of help

Note: TriggerOptions = 0 (default) means that recording is
triggered by the STE command (p. 190).

HLP? (Get List Of Available Commands)

Description: Lists a help string which contains all commands available.
Format: HLP?
Arguments: none
Response: List of commands available
Troubleshooting: Communication breakdown

8 GCS Commands

158 Version: 2.1.0 MS249E C-863.12 Mercury Controller

HLT (Halt Motion Smoothly)

Description: Stops the motion of specified axes smoothly. See the notes
below for further details.

Error code 10 is set.

#24 (p. 129) and STP (p. 191) in contrast abort current
motion as fast as possible for the controller without taking
care of maximum velocity and acceleration.

Format: HLT [{<AxisID>}]
Arguments: <AxisID>: is one axis of the controller, if left out, all axes

are stopped
Response: none
Troubleshooting: Illegal axis identifier
Notes: HLT stops motion with specified system deceleration

regarding system inertia.

HLT stops all motion caused by motion commands (e.g.,
MOV (p. 176), MVR (p. 177), GOH (p. 156), STE (p. 190)),
commands for referencing (FNL (p. 153), FPL (p. 154), FRF
(p. 155)), and macros (MAC (p. 169)).

After the axes are stopped, their target positions are set to
their current positions.

HPA? (Get List Of Available Parameters)

Description: Responds with a help string that contains all available
parameters with short descriptions. Refer to "Parameter
Overview" (p. 236) for further information.

Format: HPA?
Arguments: None
Response {<PamID>"="<string> LF}

where

<PamID> is the ID of one parameter, hexadecimal format

<string> is a string which describes the corresponding
parameter.

 The string has the following format:

<CmdLevel>TAB<MaxItem>TAB<DataType>TAB<FunctionG
roupDescription>TAB<ParameterDescription>[{TAB<Possib

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 159

leValue>"="<ValueDescription>}]

where

<CmdLevel> is the command level that allows write access
to the parameter value.

<MaxItem> is the maximum number of items of the same
type which are affected by the parameter. With the C-
863.12, an "item" is an axis or the entire system.

<DataType> is the data type of the parameter value; it can
be INT, FLOAT, or CHAR.

<FunctionGroupDescription> is the name of the function
group which the parameter belongs to.

<ParameterDescription> is the parameter name.

<PossibleValue> is one value from the permissible data
range.

<ValueDescription> is the meaning of the corresponding
value.

 The parameters listed with HPA? can be changed and/or
saved using the following commands:

SPA (p. 187) influences the parameter settings in volatile
memory (RAM).

WPA (p. 201) copies parameter settings from volatile to
nonvolatile memory.

SEP (p. 183) writes parameter settings directly into
nonvolatile memory (without changing settings in volatile
memory).

RPA (p. 181) resets volatile memory to the values from
nonvolatile memory.

HPV? (Get Parameter Value Description)

Description: Responds with a help string that contains possible
parameter values. Use HPA? instead to get a help string
that contains all available parameters with short
descriptions.

8 GCS Commands

160 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Format: HPV?
Arguments: None
Response: <string> has the following format:

“#Possible parameter values are:
{<PamID> <ItemID> “=” <ListType>
[{TAB <PossibleValue> “=” <ValueDescription>}] }
#CCL levels are:
{<PamID> <ItemID> “=”<CmdLevel> }
#HPA_Category enabled
end of help”

where

<PamID> is the ID of one parameter, hexadecimal format

<ItemID> is one item (axis, channel, whole system) of the
controller, if item=0 the description applies to all items

<ListType> determines how the possible parameter values
listed in the string have to be interpreted:
 0 = parameter not applicable for this item
 1 = enumeration
 2 = min/max

<PossibleValue> is a value from the permissible data range

<ValueDescription> is the meaning of the corresponding
value

Some parameters are write protected (by a command level
> 1) for certain items. These parameters are listed below
the “#CCL levels are” line.

<CmdLevel> is the command level that allows write access
to the parameter value.

The "#HPA_Category enabled" line is evaluated by the PC
software for display purposes.

Notes: For C-863.12, the specifications

#Possible parameter values are:

and

#CCL levels are:

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 161

are left out of the response to HPV?, because all required
information is already in the response to HPA?

JAS? (Query Joystick Axis Status)

Description: Queries the current status of the specified axis of the
specified joystick connected to the controller.

Format: JAS? [{<JoystickID> <JoystickAxis>}]
Arguments: <JoystickID> is one joystick connected to the controller;

see below for details.

<JoystickAxis> is one of the axes of the joystick; see below
for details.

Response: {<JoystickID> <JoystickAxis>"="<Amplitude>}

where

<Amplitude> is the factor which is currently applied to the
current valid velocity setting of the controlled motion axis,
corresponds to the current displacement of the joystick
axis. See below for details.

Notes: A joystick can be connected to the Joystick (p. 261) socket
of the C-863.12, the identifier is 1. The C-863.12 supports
one axis of the joystick, the identifier of the joystick axis is
1. Refer also to "Commandable Elements" (p. 17) for more
information.

The <Amplitude> factor is applied to the velocity set with
VEL (p. 199), the range is from -1.0 to 1.0. Examples: With a
factor of 0, the joystick axis is at the center position; with a
factor of -0.7, the displacement of the joystick axis is about
2/3 in negative direction, provided that a linear lookup
table is currently valid (see JLT (p. 164) for an example).

JAX (Set Axis Controlled By Joystick)

Description: Sets axis controlled by a joystick which is connected to the
controller.

Each axis of the controller can only be controlled by one
joystick axis.

Format: JAX <JoystickID> <JoystickAxis> <AxisID>
Arguments: <JoystickID> is one joystick connected to the controller;

8 GCS Commands

162 Version: 2.1.0 MS249E C-863.12 Mercury Controller

see below for details.

<JoystickAxis> is one of the axes of the joystick; see below
for details.

<AxisID> is one axis of the controller.

Response: none
Notes: A joystick can be connected to the Joystick (p. 261) socket

of the C-863.12, the identifier is 1. The C-863.12 supports
one axis of the joystick, the identifier of the joystick axis is
1. Refer also to "Commandable Elements" (p. 17) for more
information.

JAX? (Get Axis Controlled By Joystick)

Description: Queries axis controlled by a joystick which is connected to
the controller.

Format: JAX? [{<JoystickID> <JoystickAxis>}]
Arguments: <JoystickID> is one joystick connected to the controller;

see below for details.

<JoystickAxis> is one of the axes of the joystick; see below
for details.

Response: {<JoystickID> <JoystickAxis>"="{<AxisID> }LF}

where

<AxisID> is one axis of the controller.

Notes: A joystick can be connected to the Joystick (p. 261) socket
of the C-863.12, the identifier is 1. The C-863.12 supports
one axis of the joystick, the identifier of the joystick axis is
1. Refer also to "Commandable Elements" (p. 17) for more
information.

JBS? (Query Joystick Button Status)

Description: Queries the current status of the specified button of the
specified joystick connected to the controller.

Format: JBS? [{<JoystickID> <JoystickButton>}]
Arguments: <JoystickID> is one joystick connected to the controller;

see below for details.

<JoystickButton> is one of the buttons of the joystick; see
below for details.

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 163

Response: {<JoystickID> <JoystickButton> "="<State>}

where

<State> indicates if the joystick button is pressed; 0 = not
pressed, 1 = pressed.

Notes: A joystick can be connected to the Joystick (p. 261) socket
of the C-863.12, the identifier is 1. The C-863.12 supports
one button of the joystick, the identifier of the joystick
button is 1. Refer also to "Commandable Elements" (p. 17).

JDT (Set Joystick Default Lookup Table)

Description: Sets lookup table type for the specified axis of the specified
joystick connected to the controller.

The current valid lookup-table content for the specified
joystick axis is overwritten by the selection made with JDT.

Format: JDT {<JoystickID> <JoystickAxis> <uint>}
Arguments: <JoystickID> is one joystick connected to the controller;

see below for details.

<JoystickAxis> is one of the axes of the joystick; see below
for details.

<uint> defines the type of lookup-table profile to use; see
below for details.

Response: none
Notes: A joystick can be connected to the Joystick (p. 261) socket

of the C-863.12, the identifier is 1. The C-863.12 supports
one axis of the joystick, the identifier of the joystick axis is
1. Refer also to "Commandable Elements" (p. 17) for more
information.

Note: The number of write cycles in the nonvolatile
memory is limited. Change the lookup table type only if
necessary.

Available lookup
tables:

The C-863.12 provides the following types for the lookup-
table profile:

1 = linear (default)
2 = parabolic

8 GCS Commands

164 Version: 2.1.0 MS249E C-863.12 Mercury Controller

JLT (Fill Joystick Lookup Table)

Description: Fills the lookup table for the specified axis of the joystick
specified that is connected to the controller.

The amplitudes of the joystick axes (i.e., their
displacements) are mapped to the current valid velocity
settings of the controller axes. For each joystick axis there
is a lookup table that defines this mapping. With JLT this
table can be written, or a default table profile provided by
the controller can be loaded with the JDT command (p.
163).

Each lookup table consists of 256 points. By default, the
first point corresponds to the maximum joystick axis
displacement in negative direction, the 256th point to the
maximum displacement in positive direction.

Format: JLT <JoystickID> <JoystickAxis> <Addr> <floatn>
Arguments: <JoystickID> is one joystick connected to the controller;

see below for details.

<JoystickAxis> is one of the axes of the joystick; see below
for details.

<Addr> is the index of a point in the lookup table, starts
with 1.

<floatn> is the value of point n.

Response: none
Notes: A joystick can be connected to the Joystick (p. 261) socket

of the C-863.12, the identifier is 1. The C-863.12 supports
one axis of the joystick, the identifier of the joystick axis is
1. Refer also to "Commandable Elements" (p. 17) for more
information.

The values <floatn> are factors applied during joystick
control to the velocity set with VEL (p. 199), the range is
from -1.0000 to 1.0000.

The values <floatn> are automatically stored in the non-
volatile memory of the C-863.12.

Example: Point 1 has the value -1 in the current lookup
table and therefore the controlled axis will move with full
velocity in a negative direction at the maximum negative
displacement of the joystick. Points 124 to 133 have a
value of 0, i.e., at the center position of the joystick and in
a small area around the center, the velocity is 0 and the

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 165

controlled axis will not move. Point 236 has the value
0.8369, i.e., when the displacement of the joystick axis is
about 2/3 in positive direction, the controlled axis will
move in a positive direction with about 4/5 of the full
velocity. Point 256 has the value 1, i.e., the controlled axis
will move with full velocity in positive direction at the
maximum positive displacement of the joystick.

Note: The number of write cycles in the nonvolatile
memory is limited. Write values to the lookup table only
if necessary.

JLT? (Get Joystick Lookup Table Values)

Description: Queries the current valid lookup table values.
Format: JLT? [<StartPoint> <NumberOfPoints> [{<JoystickID>

<JoystickAxis>}]]
Arguments: <StartPoint>: is the start point in the lookup table, starts

with 1

<NumberOfPoints>: is the number of points to be read per
joystick axis; maximum number is 256.

<JoystickID> is one joystick connected to the controller;
see below for details.

<JoystickAxis> is one of the axes of the joystick; see below
for details.

Response: The lookup table content in GCS array format, see the
separate manual for GCS array, SM 146E, and the example
below.

Notes: With the C-863.12, <JoystickID> and <JoystickAxis> must be
left out in the JLT? command, but <StartPoint> and
<NumberOfPoints> are always required.

The values <floatn> in the lookup table are factors that are
applied to the velocity set with VEL (p. 199), the range is -
1.0000 to 1.0000.

Example: jlt? 1 20
TYPE = 1

SEPARATOR = 32
DIM = 1
NDATA = 20
NAME0 = Joysticktable 1

8 GCS Commands

166 Version: 2.1.0 MS249E C-863.12 Mercury Controller

END HEADER
-1.0000
-0.9922
-0.9834
-0.9756
-0.9678
-0.9590
-0.9512
-0.9434
-0.9346
-0.9268
-0.9189
-0.9102
-0.9023
-0.8945
-0.8857
-0.8779
-0.8701
-0.8613
-0.8535
-0.8457

JON (Set Joystick Activation Status)

Description: Activates or deactivates a joystick connected to the
controller.

Format: JON {<JoystickID> <uint>}
Arguments: <JoystickID> is one joystick connected to the controller;

see below for details.

<uint> 1 activates the joystick, 0 deactivates the joystick.

Response: none
Notes: A joystick can be connected to the Joystick (p. 261) socket

of the C-863.12, the identifier is 1. For more information,
see "Connecting an Analog Joystick" (p. 49).

Before a joystick can be activated with JON, its axes must
have been assigned to the controller axes using JAX (p.
161).

When a joystick connected to the C-863.12 is activated
with the JON command, this joystick controls the axis
velocity ("commanded velocity" output by the profile

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 167

generator).
During joystick control, the soft limit specified by the
parameter 0x15 or 0x30 is set as the target position.
Details on the parameters can be found in "Travel Range
and Soft Limits" (p. 31). When disabling a joystick, the
target position is set to the current position of the joystick-
controlled axis.

Motion commands such as MOV (p. 176) are not allowed
when a joystick is active for the axis. For further
information, see "Joystick Control" (p. 91).

JON? (Get Joystick Activation Status)

Description: Queries the activation state of the specified joystick
connected to the controller.

Format: JON? [{<JoystickID>}]
Arguments: <JoystickID> is one joystick connected to the controller;

see below for details.
Response: {<JoystickID>"="<uint>}

where

<uint> is the joystick activation state: 1 = joystick activated,
0 = joystick deactivated.

Notes: A joystick can be connected to the Joystick (p. 261) socket
of the C-863.12, the identifier is 1. For more information,
see "Connecting an Analog Joystick" (p. 49).

JRC (Jump Relatively Depending On Condition)

Description: Jumps relatively depending on a specified condition of the
following type: one specified value is compared with a
queried value according to a specified rule.

Can only be used in macros.

Format: JRC <Jump> <CMD?> <OP> <Value>
Arguments: <Jump> is the size of the relative jump. -1 means that the

macro execution pointer jumps back to the previous line; 0
means that the command is executed again, which is the
same behavior as with WAC (p. 200). 1 jumps to the next
line, making the command unnecessary, and 2 jumps over
the next command. Jumps are only permitted in the
current macro.
<CMD?> is one query command in its usual notation. The

8 GCS Commands

168 Version: 2.1.0 MS249E C-863.12 Mercury Controller

response must be a single value and not more. For an
example see below.

<OP> is the operator to be used. The following operators
are possible:
= <= < > >= !=
 Important: There must be a space before and after the
operator!

<Value> is the value to be compared with the response to
<CMD?>.

Response: none
Troubleshooting: Check proper jump target
Example: Using the following macro, you can stop motion of axis "1"

using a stop button connected to a digital input. The stop
button is checked until the axis has reached the target
position (query ONT?). When the stop button is pressed
before the target position has been reached: The response
to the POS? query is copied into the TARGET variable. This
variable is then used as second argument for the MOV
command. Therefore, the positioner just stays where it
was. To clean up, TARGET is defined as empty with the VAR
command which deletes the variable.

Write the "stop" macro:
MAC BEG stop
MOV 1 20
JRC 2 DIO? 1 = 1
JRC -1 ONT? 1 = 0
CPY TARGET POS? 1
MOV 1 ${TARGET}
VAR TARGET
MAC END

LIM? (Indicate Limit Switches)

Description: Queries whether axes have limit switches.
Format: LIM? [{<AxisID>}]
Arguments: <AxisID>: is one axis of the controller
Response: {<AxisID>"="<uint> LF}

where

<uint> indicates whether the axis has limit switches (=1) or
not (=0).

Troubleshooting: Illegal axis identifier

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 169

Notes: The C-863.12 firmware detects the presence or absence of
limit switches using a parameter (ID 0x32). The C-863.12
activates or deactivates the stop motion function at the
limit switches according to the value of this parameter as
well as referencing moves using FNL (p. 153) or FPL (p.
154).

Adapt the parameter value to your hardware using SPA (p.
187) or SEP (p. 183). For further information, see "Limit
Switch Detection" (p. 30).

You can use the digital input lines instead of the limit
switches as source of the negative or positive limit switch
signal. For further information, see "Digital Input Signals"
(p. 86).

MAC (Call Macro Function)

Description: Calls a macro function. Permits recording, deleting, and
running macros on the controller.

Format: MAC <keyword> {<parameter>}

in particular:

MAC BEG <macro name>
MAC DEF <macro name>
MAC DEF?
MAC DEL <macro name>
MAC END
MAC ERR?
MAC NSTART <macro name> <uint> [<String1> [<String2>]]
MAC START <macro name> [<String1> [<String2>]]

Arguments: <keyword> determines which macro function is called. The
following keywords and parameters are used:

 MAC BEG <macroname>
Starts recording a macro to be named macroname on the
controller; may not be used in a macro; the commands
that follow become the macro. End the recording with
MAC END. Note that erroneous macro content cannot be
detected by sending the ERR? command.

 MAC END
Stops macro recording (cannot become part of a macro)

 MAC ERR?
RepoReports the last error that occurred while the macro
was running.

8 GCS Commands

170 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Response: <macroname> <uint1>”=”<uint2> <”<”CMD”>”>
where <macroname> is the name of the macro, <uint1> is
the line in the macro, <uint2> is the error code and
<”<”CMD”>”> is the erroneous command which was sent
to the parser.

 MAC DEF <macroname>
Sets specified macro as startup macro. This macro will be
run automatically after the next switch-on or reboot of the
controller. If <macroname> is not specified, the current
startup macro selection is canceled.

 MAC DEF?
Asks for the startup macro
Response: <macroname>
If a startup macro is not defined, the response is an empty
string with the terminating character.

 MAC DEL <macroname>
Deletes specified macro.

 MAC NSTART <macro name> <uint> [<String1> [<String2>]]
Repeats the specified macro <uint> times. The macro is re-
run each time.
<String1> and <String2> are optional arguments which
specify the values for local variables 1 and 2 used in the
specified macro. <String1> and <String2> can be specified
directly or via the values of variables. Macro will not run if
the macro contains local variables but <String1> and
<String2> are not specified in the MAC NSTART command.
Refer to “Variables” (p. 120) for further details.

 MAC START <macroname> [<String1> [<String2>]]
Runs the specified macro once. <String1> and <String2>
have the same function as with MAC NSTART.

Response: None
Troubleshooting: Macro recording is active (keywords BEG, DEL) or inactive

(END)
Macro contains a disallowed MAC command

Notes: Running a macro is not allowed when a macro is being
recorded.

When a macro is recorded for a controller whose address is
different from 1, the target address must be part of each
command line, but will not become part of the macro
content. PIMikroMove automatically sends the target
address during the macro recording so that it does not
have to be entered there. You will find further information
in "Working with Macros" (p. 101) and "Target and Sender
Address" (p. 119).

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 171

The MAC BEG and MAC END commands may not be
specified when macros are recorded in the Controller
macros tab in PIMikroMove.

A macro can be overwritten by a macro with the same
name.

Macros can contain local and global variables. Refer to
"Variables" (p. 120) for further information.

A running macro sends no responses to any interface.

Depending on the value of parameter 0x72 (Ignore Macro
Error?), the following options exist when an error is caused
by a running macro:

0 = Macro running is aborted (default).
1 = The error is ignored and the macro continues to run.

MAC ERR? always reports the last error that occurred while
the a macro was running irrespective of the parameter
setting.

The following commands provided by the C-863.12 can
only be used in macros:
DEL (p. 142), JRC (p. 167), MEX (p. 174) and WAC (p. 200).

A macro can start another macro. The maximum number
of nesting levels is 5. A macro can call itself to form an
infinite loop.

All commands can be sent from the command line while a
macro is running. The macro content and motion
commands received from the command line can overwrite
each other.

Macro execution can be stopped with #24 (p. 129) and STP
(p. 191).

It is not possible to run several macros simultaneously.
Only one macro can be run at a time.

A macro cannot be deleted while it is running.

You can query with #8 (p. 129) if a macro is currently
running on the controller.

Note: The number of write cycles in the nonvolatile

8 GCS Commands

172 Version: 2.1.0 MS249E C-863.12 Mercury Controller

memory is limited. Only record macros if this is necessary.

MAC? (List Macros)

Description: Lists macros or content of a specified macro.
Format: MAC? [<macroname>]
Arguments <macroname>: name of the macro where the content is to

be listed; if not specified, the names of all stored macros
are listed.

Response: <string>

If <macroname> was specified, <string> is the content of
this macro;

If <macroname> was not specified, <string> is a list with
the names of all stored macros

Troubleshooting: Macro <macroname> not found

MAN? (Get Help String For Command)

Description: Shows a detailed help text for individual commands.
Format: MAN? <CMD>
Arguments: <CMD> is the command mnemonic of the command for

which the help text is to be displayed (see below).
Response: A string that describes the command.
Notes: A detailed help text can be displayed for the following GCS

commands:
CTO, CTO?, WPA

Example: Send: MAN? CTO
Receive:
CTO {<TrigOutID> <CTOPam> <Value>} Set
Configuration Of Trigger Output
#AvailableCTOparameters
<CTOPam> <Description>
<CTOPam> (configuration parameter):
1 TriggerStep
2 Axis
3 TriggerMode
7 Polarity
8 StartThreshold
9 StopThreshold
10 TriggerPosition

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 173

#AvailableTriggerModes
<Value> <Description>
0 PositionDistance
2 OnTarget
5 MotionError
6 InMotion
7 Position+Offset
8 SinglePosition
#AvailablePolarities
<Value> <Description>
0 ActiveLow
1 ActiveHigh
end of help

MAT (Calculate And Save To Variable)

Description: Carries out a mathematical operation or bit operation and
saves the result as a variable (p. 120).

The variable is in volatile memory (RAM) only.

Format: MAT <Variable> "=" <FLOAT1> <OP> <FLOAT2>
Arguments: <Variable> is the name of the variable where the result is

to be saved.

<FLOAT1> and <FLOAT2> are the values for calculating the
result. They can be specified directly or via the value of a
variable.

<OP> is the operator to be used: The following operators
are possible:
<OP> Operation Type
+ Addition Mathematical operation
- Subtraction Mathematical operation
* Multiplication Mathematical operation
AND UND Bit operation
OR ODER Bit operation
XOR XOR Bit operation

Important: There must be a blank space before and after
each "=" and the operator!

Response: None
Notes: Using MAT to set local variables is only possible in macros.

8 GCS Commands

174 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Example 1: Send: MAT TARGET = ${POS} * 2.0
The TARGET variable contains 2.0 times the value of the
POS variable.

Example 2: Send: MAT TARGET = 2 * 0x10
Send: VAR? TARGET
Receive: TARGET=32
NOTICE: The values from which the result is to be
calculated can be written in hexadecimal or decimal
format. The result is always output in decimal format.

Example 3: Send: MAT INVERT = 0x45 XOR 0xFF
Send: VAR? INVERT
Receive: INVERT=186
NOTICE: The bit operation XOR with the value 0xFF
corresponds to an inversion of the value 0x45. The result is
output in decimal format.

MEX (Stop Macro Execution Due To Condition)

Description: Stops running the macro due to a specified condition of the
following type: a specified value is compared with a
queried value according to a specified rule.

Can only be used in macros.

When the macro interpreter accesses this command, the
condition is checked. If it is true, the current macro is
stopped; otherwise the macro continues to run with the
next line. Should the condition be fulfilled later, the
interpreter will ignore it.

See also the WAC command (p. 200).

Format: MEX <CMD?> <OP> <Value>
Arguments <CMD?> is one query command in its usual syntax. The

response has to be a single value and not more. For an
example see below.

<OP> is the operator to be used. The following operators
are possible:
= <= < > >= !=
Important: There must be a blank space before and after
the operator!

<Value> is the value that is compared with the response to
<CMD?>.

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 175

Response: None
Example: Send: MAC START LOOP

Note:
LOOP macro contains the following:
MAC START KEY1
MAC START KEY2
MEX DIO? 4 = 1
MAC START LOOP

KEY1 macro contains the following:
MEX DIO? 4 = 1
 MEX DIO? 1 = 0
 MVR 1 1.0
DEL 100

KEY2 macro contains the following:
MEX DIO? 4 = 1
MEX DIO? 2 = 0
 MVR 1 -1.0
DEL 100

LOOP macro forms an infinite loop by permanently calling
KEY1, KEY2 and itself.

KEY1 checks the state of the digital input channel 1 (is on
the I/O socket (p. 260)). If it is not set (0), the macro is
aborted, otherwise the macro will move axis 1 by 1.0 in
positive direction (relative move).

KEY2 checks the state of the digital input channel 2 and
moves axis 1 in negative direction accordingly.

By connecting the digital input channels 1, 2 and 4 with
pushbuttons, e.g., with the C-170.PB pushbutton box, it is
possible to realize interactive control of an axis without
any software assistance. The delay (DEL 100) is required to
avoid generating multiple MVR commands while pressing
the pushbutton for a short time.

 Channel 4 is used as a global exit. Since MEX only stops
execution of the current macro, it must also be included in
the calling macro, which would otherwise continue.

8 GCS Commands

176 Version: 2.1.0 MS249E C-863.12 Mercury Controller

MOV (Set Target Position)

Description: Sets an absolute target position for the specified axis.
Format: MOV {<AxisID> <Position>}
Arguments: <AxisID> is one axis of the controller.

<Position> is the absolute target position in physical units.

Response: none
Notes: The servo mode must be switched on when this command

is used (closed-loop operation).

The target position must be inside the soft limits. Use
TMN? (p. 194) and TMX? (p. 195) to query the current valid
soft limits.

The motion can be stopped by #24 (p. 129), STP (p. 191),
and HLT (p. 158).

During motion, a new motion command resets the target
to a new value and the old value may never be reached.
This is also valid with macros: Motion commands can be
sent from the command line when a macro is running. The
macro content and motion commands received from the
command line can overwrite each other.

Motion commands such as MOV are not permitted when a
joystick is active for the axis. For further information, see
"Joystick Control" (p. 91).

Example 1: Send: MOV 1 10
Note: Axis 1 moves to 10 (target position in mm)

Example 2: Send: MOV 1 243
Send: ERR?
Receive: 7
Note: The axis does not move. The error code "7" in the
reply to the ERR? command (p. 151) indicates that the
target position specified in the motion command is out of
limits.

MOV? (Get Target Position)

Description: Returns last valid commanded target position.
Format: MOV? [{<AxisID>}]
Arguments: <AxisID> is one axis of the controller
Response: {<AxisID>"="<float> LF}

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 177

where

<float> is the last commanded target position in physical
units

Troubleshooting: Illegal axis identifier
Notes: The target position can be changed by commands that

cause motion (e.g. MOV (p. 176), MVR (p. 177), GOH (p.
156), STE (p. 190)) or by the joystick (when disabling a
joystick, the target position is set to the current position
for joystick-controlled axes in closed-loop operation).

MOV? gets the commanded positions. Use POS? (p. 179) to
get the current positions.

MVR (Set Target Relative To Current Position)

Description: Moves the specified axis relative to the last commanded
target position.

Format: MVR {<AxisID> <Distance>}
Arguments: <AxisID> is one axis of the controller.

<Distance> specifies the distance that the axis is to move;
the sum of the distance and the last commanded target
position is set as the new target position (in physical units).

Response: none
Notes: The servo mode must be switched on when this command

is used (closed-loop operation).

The target position must be inside the soft limits. Use
TMN? (p. 194) and TMX? (p. 195) to get the currently valid
soft limits, and MOV? (p. 176) to get the current target.

The motion can be stopped by #24 (p. 129), STP (p. 191)
and HLT (p. 158).

During motion, a new motion command resets the target
to a new value and the old value may never be reached.
This is also valid with macros: Motion commands can be
sent from the command line when a macro is running. The
macro content and motion commands received from the
command line can overwrite each other.

Motion commands such as MVR are not permitted when a
joystick is active for the axis. For further information, see

8 GCS Commands

178 Version: 2.1.0 MS249E C-863.12 Mercury Controller

"Joystick Control" (p. 91).
Example: Send: MOV 1 0.5

Note: This is an absolute motion.
Send: POS? 1
Receive: 1=0.500000
Send: MOV? 1
Receive: 1=0.500000
Send: MVR 1 2
Note: This is a relative motion.
Send: POS? 1
Receive: 1=2.500000
Send: MVR 1 2000
Note: New target position of axis 1 would exceed motion
range. Command is ignored, i.e., the target position
remains unchanged, and the axis does not move.
Send: MOV? 1
Receive: 1=2.500000
Send: POS? 1
Receive: 1=2.500000

ONT? (Get On-Target State)

Description: Queries the on-target state of the specified axis.

If all arguments are left out, queries state of all axes.

Format: ONT? [{<AxisID>}]
Arguments: <AxisID> is one axis of the controller.
Response: {<AxisID>"="<uint> LF}

where

<uint> = "1" when the specified axis has reached the target
value, otherwise "0".

Troubleshooting: Illegal axis identifier
Notes: The detection of the on-target state is only possible in

closed-loop operation (servo mode ON).

The on-target state is influenced by the settings for the
settling window (parameter 0x36) and the delay time
(parameter 0x3F). Details see "On-Target State" (p. 29).

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 179

POS (Set Real Position)

Description: Sets the current position of the axis (does not cause
motion).

Format: POS {<AxisID> <Position>}
Arguments: <AxisID> is one axis of the controller.

<Position> is the new current position in physical units.

Response: None
Troubleshooting: Illegal axis identifier
Notes: It is only possible to set the current position with POS

when the referencing method "0" is selected, see RON (p.
180).

An axis is considered to be "referenced" when the position
has been set with POS (for more information, see
"Referencing" (p. 34)).

The minimum and maximum commandable positions
(TMN? (p. 194), TMX? (p. 195)) are not adapted when a
position is set with POS. This can result in target positions
which are allowed by the C-863.12 but cannot be reached
by the hardware. Target positions are also possible that
can be reached by the hardware but are refused by the C-
863.12. Furthermore, the zero position can be outside of
the physical travel range after using POS.

POS? (Get Real Position)

Description: Queries the current axis position.

If no arguments are specified, the current position of all
axes is queried.

Format: POS? [{<AxisID>}]
Arguments: <AxisID> is one axis of the controller.
Response: {<AxisID>"="<float> LF}

where

<float> is the current axis position in physical units.

Troubleshooting: Illegal axis identifier

8 GCS Commands

180 Version: 2.1.0 MS249E C-863.12 Mercury Controller

RBT (Reboot System)

Description: Reboots system. The controller behaves the same as after
switching on.

Format: RBT
Arguments: none
Response: none
Notes: RBT cannot be used in macros. This is to avoid problems

with startup macro execution.

RMC? (List Running Macros)

Description: Lists macros which are currently running.
Format: RMC?
Arguments: None
Response: {<macroname> LF}

where

<macroname> is the name of one macro which is saved on
the controller and currently running. The response is an
empty line when no macro is running.

RON (Set Reference Mode)

Description: Selects the referencing method for the specified axes
Format: RON {<AxisID> <ReferenceOn>}
Arguments: <AxisID> is one axis of the controller.

<ReferenceOn> is the referencing method. Can be 0 or 1. 1
is default. See below for details.

Response: None
Troubleshooting: Illegal axis identifier
Notes: <ReferenceOn> = 0: An absolute position value can be

assigned with POS (p. 179) or a referencing move can be
started with FRF (p. 155), FNL (p. 153) or FPL (p. 154).
Relative motion with MVR is possible, even when
referencing has not been done for the axis.

<ReferenceOn> = 1: A referencing move for the axis must
be started with FRF, FNL or FPL. Using POS is not allowed.
Motion in closed-loop operation is only possible when the
axis has been referenced.

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 181

For further information, see "Referencing" (p. 34) and
"Travel Range and Soft Limits" (p. 31).

RON? (Get Reference Mode)

Description: Queries referencing method of specified axes.
Format: RON? [{ <AxisID>}]
Arguments: <AxisID> is one axis of the controller.
Response: {<AxisID>"="<ReferenceOn> LF}

where

<ReferenceOn> is the currently selected referencing
method for the axis

Troubleshooting: Illegal axis identifier
Note: Further information can be found in the description of the

RON command (p. 180).

RPA (Reset Volatile Memory Parameters)

Description: Resets the specified parameter of the specified element.
The value from nonvolatile memory is written into volatile
memory.

Related commands:

With HPA? (p. 158) you can obtain a list of the available
parameters. SPA (p. 187) influences the parameter settings
in volatile memory, WPA (p. 201) writes parameter settings
from volatile to nonvolatile memory, and SEP (p. 183)
writes parameter settings directly into nonvolatile memory
(without changing the settings in volatile memory).

See SPA for an example.

Format: RPA [{<ItemID> <PamID>}]
Arguments: <ItemID> is the element for resetting a parameter. See

below for details.

<PamID> is the parameter ID, can be written in
hexadecimal or decimal format. See below for details.

Response: none
Troubleshooting: Illegal element identifier, wrong parameter ID

8 GCS Commands

182 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Notes: With the C-863.12, you can reset either all parameters or
one single parameter with RPA.

Available element
IDs and
parameter IDs:

An element is an axis (the identifier can be changed with
SAI (p. 183)) or the entire system. Refer to "Commandable
Elements" (p. 17) for further information.

Valid parameter IDs are specified in "Parameter Overview"
(p. 236).

RTR (Set Record Table Rate)

Description: Sets the record table rate, i.e., the number of cycles to be
used in data recording operations. Settings larger than 1
make it possible to cover longer time periods.

Format: RTR <RecordTableRate>
Arguments: <RecordTableRate> is the record table rate to be used for

recording operations (unit: number of cycles), must be an
integer value larger than zero.

Response: None
Notes: The duration of the recording can be calculated as follows:

Rec. duration = cycle time of the servo loop * RTR value *
number of points

where

the cycle time of the servo loop for the C-863.12 is 50 µs

the number of points for the C-863.12 is 1024 (length of
data recorder table)

For further information, see "Data Recorder" (p. 76).

The record table rate set with RTR is saved in volatile
memory (RAM) only.

RTR? (Get Record Table Rate)

Description: Queries the current record table rate, i.e., the number of
cycles used in data recording operations.

Format: RTR?
Arguments: None
Response: <RecordTableRate> is the table rate used for recording

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 183

operations (unit: number of cycles).

SAI (Set Current Axis Identifiers)

Description: Sets the axis identifiers for the specified axes.

After it was set with SAI, the new axis identifier must be
used as <AxisID> in all axis-related commands.

Format: SAI {<AxisID> <NewIdentifier>}
Arguments: <AxisID> is one axis of the controller

<NewIdentifier> is the new identifier to use for the axis,
see below for details

Response: none
Notes: An axis identifier can consist of up to 8 characters. Use TVI?

(p. 197) to get valid characters.

The new axis identifier is only stored in the volatile
memory of the C-863.12. A changed axis identifier can be
stored permanently in the C-863.12 with the WPA (p. 201)
command.

SAI? (Get List Of Current Axis Identifiers)

Description: Queries the axis identifiers.

Refer also to "Commandable Elements" (p. 17).

Format: SAI? [ALL]
Arguments: [ALL] is optional. For controllers that allow deactivating the

axis, [ALL] ensures that the response also includes the axes
that are "deactivated".

Response: {<AxisID> LF}

<AxisID> is one axis of the controller.

SEP (Set Non-Volatile Memory Parameters)

Description: Sets a parameter of a specified element to a different value
in nonvolatile memory, where it becomes the new default.

After parameters were set with SEP, you can use RPA (p.
181) to activate them (write them to volatile memory)
without controller reboot.

8 GCS Commands

184 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Note that this command is for setting hardware-specific
parameters. Wrong values may lead to improper
operation or damage of your hardware!

Related commands:

HPA? (p. 158) returns a list of the available parameters.

SPA (p. 187) writes parameter settings into volatile
memory (without changing the settings in nonvolatile
memory).

WPA (p. 201) writes parameter settings from volatile to
nonvolatile memory.

Format: SEP <Pswd> {<ItemID> <PamID> <PamValue>}
Arguments <Pswd> is the password for writing to the nonvolatile

memory; the default value is "100".

<ItemID> is the element for changing a parameter in the
nonvolatile memory. See below for details.

<PamID> is the parameter identifier, can be written in
hexadecimal or decimal format. See below for details.

<PamValue> is the value for setting the specified
parameter of the specified element.

Response: None
Troubleshooting: Illegal element identifier, wrong parameter ID, invalid

password
Notes: Note that the number of write cycles in the nonvolatile

memory is limited. Write default settings only if
necessary.

With the C-863.12 you can only write one parameter per
SEP command.

Available item
IDs and
parameter IDs:

An element is an axis (the identifier can be changed with
SAI (p. 183)) or the entire system. Refer to "Commandable
Elements" (p. 17) for further information.

Valid parameter IDs are specified in "Parameter Overview"
(p. 236).

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 185

SEP? (Get Nonvolatile Memory Parameters)

Description: Queries the value of a parameter of a specified element
from nonvolatile memory.

With HPA? (p. 158) you can obtain a list of the available
parameters and their IDs.

Format: SEP? [{<ItemID> <PamID>}]
Arguments: <ItemID> is the element for querying a parameter value

from nonvolatile memory. See below for details.

<PamID> is the parameter ID, can be written in
hexadecimal or decimal format. See below for details.

Response: {<ItemID> <PamID>"="<PamValue> LF}

where

<PamValue> is the value of the specified parameter for the
specified element

Troubleshooting: Illegal element identifier, wrong parameter ID
Notes: With the C-863.12, you can query either all parameters or

one single parameter per SEP? command.
Available element
IDs and
parameter IDs:

An element is an axis (the identifier can be changed with
SAI (p. 183)) or the entire system. Refer to "Commandable
Elements" (p. 17) for further information.

Valid parameter IDs are specified in "Parameter Overview"
(p. 236).

SMO (Set Open-Loop Control Value)

Description: Sets control value directly to move the axis. Profile
generator (if present), sensor feedback and servo
algorithm are not taken into account.

Servo mode must be switched off when using this
command (open-loop operation).

Format: SMO {<AxisID> <ControlValue>}
Arguments <AxisID> is one axis of the controller.

<ControlValue> is the new control value (dimensionless).
See below for details.

Response: None
Troubleshooting: Illegal axis identifier

8 GCS Commands

186 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Servo mode is switched on for one of the specified axes.
Notes: NOTICE: In the case of large control values, the positioner

can collide with the hard stop despite the limit switch
function. This can cause damage to equipment.

The unsigned control value may not be greater than the
value of the Maximum Motor Output parameter (0x9).
When this parameter is set to its maximum (32767),
<ControlValue> ranges from -32766 to 32766
(dimensionless). The sign of the value determines the
direction of motion.

<ControlValue> controls the PWM converter for the axis
(see block diagram (p. 16)).

For further information, see "Motor Control" (p. 16).

Example: Send: SMO 1 -16000
Note: The control value is about half the maximum control
value. The axis moves in negative direction.

SMO? (Get Control Value)

Description: Gets last valid control value of given axis.
Format: SMO? [{<AxisID>}]
Arguments <AxisID> is one axis of the controller
Response: {<AxisID>"="<float> LF}

where

<float> is the last valid control value (dimensionless). For
details see below.

Troubleshooting: Illegal axis identifier
Notes: The control value which is returned by SMO? can be the

result of the servo algorithm and other corrections, or it
can be the value set by an SMO command (p. 185) in open-
loop operation. See the block diagram (p. 16) for further
information.

The control value ranges from -32766 to 32766
(dimensionless) and controls the PWM converter for the
axis. The sign of the value determines the direction of
motion.

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 187

SPA (Set Volatile Memory Parameters)

Description: Sets a parameter of the specified element in the volatile
memory (RAM) to a specific value. Parameter changes are
lost when the controller is switched off or rebooted.

Format: SPA {<ItemID> <PamID> <PamValue>}
Arguments: <ItemID> is the element for which a parameter is changed

in volatile memory. See below for details.

<PamID> is the parameter ID, can be written in
hexadecimal or decimal format. See below for details.

<PamValue> is the value to which the specified parameter
of the specified element is set.

Response: None
 Parameter changes are also lost when the parameters are

reset to their default values with RPA (p. 181).

Note that this command is for setting hardware-specific
parameters. Wrong values may lead to improper
operation or damage of your hardware!

Related commands:

HPA? (p. 158) returns a list of the available parameters.

SEP (p. 183) writes parameter settings directly into
nonvolatile memory (without changing the settings in
volatile memory).

WPA (p. 201) writes parameter settings from volatile to
nonvolatile memory.

RPA resets volatile memory to the value in nonvolatile
memory.

Troubleshooting: Illegal element identifier, wrong parameter ID, value out of
range

Notes: With the C-863.12, you can write only one parameter per
SPA command.

Available item
IDs and parameter
IDs:

An item is an axis (the identifier can be changed with SAI
(p. 183)) or the entire system. For further information, see
"Commandable Items" (p. 17).

Valid parameter IDs are specified in the parameter
overview (p. 236).

Example 1: Send: SPA 1 0x411 100

8 GCS Commands

188 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Note: Sets the P term of the servo algorithm for axis 1 to
100; the parameter ID is written in hexadecimal format

Send: SPA 1 1041 150

Note: Sets the P term of the servo algorithm for axis 1 to
150; the parameter ID is written in decimal format

Example 2: The P, I and D parameters of the servo algorithm must be
adapted to a new load applied to the mechanics
connected.

Send: SPA 1 0x411 150

Note: The P term is set to 150 for axis 1. The setting is
made in volatile memory only.

Use SPA to set the I and D terms in volatile memory and
then test the function of the system. If the closed-loop
system performance proves satisfactory and you want to
use this system configuration as default, save the
parameter settings from volatile to nonvolatile memory.

Send: WPA 100

Note: See the command description for WPA (p. 201) for
details on the extent of the saved settings.

Example 3: Send: SEP 100 LEFT 0xA 20

Note: The maximum velocity must be set to 20 mm/s for
axis LEFT (axis was renamed with SAI). The setting is made
in nonvolatile memory and is therefore the new default,
but is not yet active. To use the new settings immediately,
you now have to load them to volatile memory (otherwise
they would become active after the next power-on or
reboot of the controller).

Send: RPA

Note: The new configuration is active now.

Send: SPA? LEFT 0xA

Receive: LEFT 0xA=20.00000

Note: Check the parameter settings in volatile memory.

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 189

SPA? (Get Volatile Memory Parameters)

Description: Queries the value of a parameter of a specified element
from volatile memory (RAM).

You can obtain a list of the available parameters with HPA?
(p. 158).

Format: SPA? [{<ItemID> <PamID>}]
Arguments: <ItemID> is the element for querying a parameter in

volatile memory. See below for details.

<PamID> is the parameter identifier, can be written in
hexadecimal or decimal format. See below for details.

Response: {<ItemID> <PamID>"="<PamValue> LF}

where

<PamValue> is the value of the specified parameter for the
specified element

Troubleshooting: Illegal element identifier, wrong parameter ID
Notes: With the C-863.12, you can query either all parameters or

one single parameter per SPA? command.
Available item
IDs and
parameter IDs:

An item is an axis (the identifier can be changed with SAI
(p. 183)) or the entire system. For further information, see
"Commandable Items" (p. 17).

Valid parameter IDs are specified in the parameter
overview (p. 236).

SRG? (Query Status Register Value)

Description: Returns register values for queried elements and registers.
Format: SRG? [{<ItemID> <RegisterID>}]
Arguments: <ItemID> is the element for querying a register. See below

for details.

<RegisterID> is the ID of the specified register; see below
for available registers.

Response: {<ItemID><RegisterID>"="<Value> LF}

where

<Value> is the value of the register; see below for more
details.

Note: This command is identical in function to #4 (p. 128) which

8 GCS Commands

190 Version: 2.1.0 MS249E C-863.12 Mercury Controller

should be preferred when the controller is performing
time-consuming tasks.

Possible register
IDs and response
values:

<ItemID> is one axis of the controller.

<RegisterID> can be 1.

<Value> is the bit-encoded response and is returned as the
sum of the following individual codes in hexadecimal
format:

Bit 15 14 13 12 11 10 9 8
Descript-
ion

On-target
state

Is
referencing

In
motion

Servo
mode
on

- - - Error
flag

Bit 7 6 5 4 3 2 1 0
Descript-
ion

Digital
in-
put
line 4

Digital
in-
put
line 3

Digital
in-
put
line 2

Digital
in-
put
line 1

- Positiv
e
limit
switch

Ref-
erence
switch

Nega-
tive
limit
switch

Example: Send: SRG? 1 1
Receive: 1 1=0x9002
Note: The response is in hexadecimal format. It means that
axis 1 is on target (on-target state = true), the servo mode
is ON for that axis, no error has occurred, the states of
digital input lines 1 to 4 are low, and axis 1 is on the
positive side of the reference switch.

STE (Start Step And Response Measurement)

Description: Starts a step and records the step response for the
specified axis.

The data recorder configuration, i.e., the assignment of
data sources and record options to the recorder tables, can
be set with DRC (p. 146).

The recorded data can be read with the DRR? command (p.
148).

Format: STE <AxisID> <Amplitude>
Arguments: <AxisID> is one axis of the controller

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 191

<Amplitude> is the size of the step. See below for details.
Response: None
Troubleshooting: Servo mode must be switched on for the commanded axis

prior to using this command (closed-loop operation).

The target position must be inside the soft limits. Use
TMN? (p. 194) and TMX? (p. 195) to ask for the current
valid soft limits, and MOV? (p. 176) for the current target.

Motion commands like STE are not allowed when the
joystick is active for the axis. For further information see
"Joystick Control" (p. 91).

Notes: A "step" consists of a relative move of the specified
amplitude which is performed relative to the current
position.

STP (Stop All Axes)

Description: Stops all axes abruptly. See the notes below for further
details.

Sets error code to 10.

This command is identical in function to #24 (p. 129).

Format: STP
Arguments: None
Response: None
Troubleshooting: Communication breakdown
Notes: STP stops all motion caused by motion commands (e.g.,

MOV (p. 176), MVR (p. 177), GOH (p. 156), STE (p. 190)),
commands for referencing (FNL (p. 153), FPL (p. 154), FRF
(p. 155)), and macros (MAC (p. 169)). Also stops macro
running.

After the axes are stopped, their target positions are set to
their current positions.

HLT (p. 158) in contrast to STP stops motion with specified
system deceleration regarding system inertia.

SVO (Set Servo Mode)

Description: Sets the servo mode for specified axes (open-loop or
closed-loop operation).

8 GCS Commands

192 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Format: SVO {<AxisID> <ServoState>}
Arguments: <AxisID> is one axis of the controller

<ServoState> can have the following values:
0 = servo mode off (open-loop operation)
1 = servo mode on (closed-loop operation)

Response: None
Troubleshooting: Illegal axis identifier
Notes: When switching from open-loop to closed-loop operation,

the target is set to the current position to avoid jumps of
the mechanics.

The current state of the servo mode determines the
applicable motion commands:
Servo mode on: Use the MOV (p. 176), MVR (p. 177), GOH
(p. 156) commands or joystick control (p. 91).
Servo mode off: Use SMO (p. 185).

The servo mode must be switched on before referencing
moves can be started with FRF (p. 155), FNL (p. 153) or FPL
(p. 154).

When the servo mode is switched off while the axis is
moving, the axis stops.

You can use a startup macro to configure the controller so
that the servo mode is switched on automatically after
switching on or rebooting. For further information, see
"Setting up a startup macro" (p. 107).

If the axis has a brake, setting the servo mode with SVO
influences the activation state of the brake:
 Switching on the servo mode deactivates the brake.
 Switching off the servo mode activates the brake.

When the servo mode is switched off, the brake can be
activated or deactivated with BRA (p. 133). Secure the
positioner against unintentional motion before you
deactivate the brake with BRA!

If a motion error occurs, the servo mode is switched off
and the brake is activated. For more information see
"Motion Errors" (p. 75).

SVO? (Get Servo Mode)

Description: Queries the servo mode for the axes specified.

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 193

If arguments are not specified, queries the servo mode of
all axes.

Format: SVO? [{<AxisID>}]
Arguments: <AxisID> is one axis of the controller.
Response: {<AxisID>"="<ServoState> LF}

where

<ServoState> is the current servo mode for the axis:
0 = servo mode off (open-loop operation)
1 = servo mode on (closed-loop operation)

Troubleshooting: Illegal axis identifier

TAC? (Tell Analog Channels)

Description: Gets the number of installed analog lines.
Format: TAC?
Arguments: None
Response: <uint> indicates the total number of analog lines (inputs

and outputs).
Notes: Gets the number of analog input lines on the I/O socket (p.

260) of the C-863.12 (Input 1 to Input 4). Note that these
lines can also be used for digital input. For further
information, refer to "Commandable Elements" (p. 17).

TAV? (Get Analog Input Voltage)

Description: Get voltage at analog input.
Format: TAV? [{<AnalogInputID>}]
Arguments: <AnalogInputID> is the identifier of the analog input

channel; see below for details.
Response: {<AnalogInputID>"="<float> LF}

where

<float> is the current voltage at the analog input in volts

Notes: Using the TAV? command, you can directly read the Input 1
to Input 4 lines on the I/O socket (p. 260) of the C-863.12.
The identifiers of the lines are 1 to 4. Refer to
"Commandable Elements" (p. 17) for further information.

You can record the values of the analog input lines using
the DRC record option 81 (p. 146).

8 GCS Commands

194 Version: 2.1.0 MS249E C-863.12 Mercury Controller

TCV? (Get Commanded Closed-Loop Velocity)

Description: Queries the current value of the velocity (value calculated
by the profile generator).

Format: TCV? [{<AxisID>}]
Arguments: <AxisID> is one axis of the controller.
Response: {<AxisID>"="<float> LF}

where

<float> is the velocity value in physical units per second.

TIO? (Tell Digital I/O Lines)

Description: Tells number of installed digital I/O lines
Format: TIO?
Arguments: none
Response: I=<uint1>

O=<uint2>

where

<uint1> is the number of digital input lines.
<uint2> is the number of digital output lines.

Notes: The digital output lines reported by TIO? are Output 1 to
Output 4. The states of the Output 1 to Output 4 lines can
be set using the DIO command (p. 144). Furthermore, you
can program the Output 1 to Output 4 lines using the CTO
command (p. 137) (trigger configuration) and the TRO
command (p. 195) (trigger activation/deactivation).

The digital input lines reported by TIO? are Input 1 to Input
4. They can be read with DIO? (p. 145), #4 (p. 128) and
SRG? (p. 189).

All the lines are located on the I/O socket (p. 260) of the C-
863.12.

TMN? (Get Minimum Commandable Position)

Description: Get the minimum commandable position in physical units.
Format: TMN? [{ <AxisID>}]
Arguments: <AxisID> is one axis of the controller
Response {<AxisID>"="<float> LF}

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 195

where

<float> is the minimum commandable position in physical
units

Note: The minimum commandable position is defined by the
parameter 0x30. When redefining the zero position with
the DFH (p. 142) command, the minimum commandable
position is automatically adapted to the new zero position.

TMX? (Get Maximum Commandable Position)

Description: Get the maximum commandable position in physical units.
Format: TMX? [{ <AxisID>}]
Arguments: <AxisID> is one axis of the controller
Response {<AxisID>"="<float> LF}

where

<float> is the maximum commandable position in physical
units

Note: The maximum commandable position is defined by the
parameter 0x15. When redefining the zero position with
the DFH (p. 142) command, the maximum commandable
position is automatically adapted to the new zero position.

TNR? (Get Number of Record Tables)

Description: Queries the number of data recorder tables currently
available on the controller.

Format: TNR?
Arguments: none
Response <uint> is the number of data recorder tables which are

currently available
Notes: The C-863.12 has four data recorder tables with 1024 data

points per table.

For further information, see "Data Recorder" (p. 76).

8 GCS Commands

196 Version: 2.1.0 MS249E C-863.12 Mercury Controller

TRO (Set Trigger Output State)

Description: Activates or deactivates the trigger output conditions set
with CTO (p. 137) for the specified digital output line.

Format: TRO {<TrigOutID> <TrigMode>}
Arguments: <TrigOutID> is a digital output line of the controller; see

below for further details.

<TrigMode> can have the following values:
0 = Trigger output deactivated
1 = Trigger output activated

Response: None
Troubleshooting: Illegal identifier of the digital output line
Notes: <TrigOutID> corresponds to the digital output lines Output

1 to Output 4, IDs = 1 to 4; for further information, see
"I/O" (p. 260).

Do not use DIO (p. 144) on digital output lines where the
trigger output is activated by TRO.

TRO? (Get Trigger Output State)

Description: Queries the activation status of the trigger output
configuration made with CTO (p. 137) for the specified
digital output line.

If no arguments are specified, queries state of all digital
output lines.

Format: TRO? [{<TrigOutID>}]
Arguments: <TrigOutID> is one digital output line of the controller, see

TRO (p. 195) for more details.
Response: {<TrigOutID>"="<TrigMode> LF}

where

<TrigMode> is the current state of the digital output line:
0 = Trigger output deactivated
1 = Trigger output activated

Troubleshooting: Illegal identifier of the digital output line

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 197

TRS? (Indicate Reference Switch)

Description: Indicates whether axes have a reference switch with
direction sensing.

Format: TRS? [{<AxisID>}]
Arguments: <AxisID> is one axis of the controller
Response: {<AxisID>"="<uint> LF}

where

<uint> indicates whether the axis has a direction-sensing
reference switch (=1) or not (=0).

Troubleshooting: Illegal axis identifier
Notes: The C-863.12 firmware detects the presence or absence of

a reference switch via a parameter (ID 0x14). The C-863.12
activates or deactivates referencing moves to the
reference switch (FRF command (p. 155)) according to the
value of this parameter. Adapt the parameter value to your
hardware using SPA (p. 187) or SEP (p. 183). For further
information, see "Reference Switch Detection" (p. 29).

You can use a digital input line instead of the reference
switch as source of the reference point signal for the FRF
command. For further information, see "Digital Input
Signals" (p. 86).

TVI? (Tell Valid Character Set For Axis Identifiers)

Description: Returns a string with characters which can be used for axis
identifiers.

Use SAI (p. 183) to change the axis identifiers and SAI? (p.
183) to ask for the current valid axis identifiers.

Format: TVI?
Arguments: None
Response: <string> is a list of characters

Notes: With the C-863.12, the string consists of

1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ-_

8 GCS Commands

198 Version: 2.1.0 MS249E C-863.12 Mercury Controller

VAR (Set Variable Value)

Description: Sets a variable to a certain value.

Local variables can be set using VAR in macros only. See
“Variables” (p. 120) for more details on local and global
variables.

The variable is present in RAM only.

Format: VAR <Variable> <String>
Arguments: <Variable> is the name of the variable whose value is to be

set.

<String> is the value to which the variable is to be set. If
not specified, the variable is deleted.

The value can be specified directly or via the value of a
variable.

Refer to “Variables” (p. 120) for more details on
conventions regarding variable names and values.

Response: None
Example: It is possible to set the value of one variable (e.g., TARGET)

to that of another variable (e.g., SOURCE):

VAR TARGET ${SOURCE}

Use braces if the name of the variable is longer than one
character:

VAR A ONE
VAR VARB TWO
VAR $A 1
VAR ${VARB} 2
VAR $VARB 2 // this will result in an unwanted behavior
VAR?
A=ONE
VARB=TWO
ONE=1
TWO=2 // ${VARB}: is replaced by its value “TWO”.
ARB=2 // $VARB: $V is replaced by its (empty) value.

See ADD (p. 131) for another example.

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 199

VAR? (Get Variable Values)

Description: Gets values of variables.

If VAR? is combined with CPY (p. 136), JRC (p. 167), MEX (p.
174) or WAC (p. 200), the response to VAR? has to be a
single value and not more.

Refer to “Variables” (p. 120) for more details on local and
global variables.

Format: VAR? [{<Variable>}]
Arguments: <Variable> is the name of the variable to be queried. Refer

to "Variables" (p. 120) for more details on name
conventions.

All global variables present in RAM are listed if <Variable>
is not specified.

Response: {<Variable>”=”<String>LF}

where

<String> gives the value to which the variable is set.

Notes: Local variables can be queried using VAR? only when a
macro with local variables is running. See “Variables” (p.
120) for details regarding local and global variables.

Example: See ADD (p. 131) for an example.

VEL (Set Closed-Loop Velocity)

Description: Set velocity of specified axes.
Format: VEL {<AxisID> <Velocity>}
Arguments: <AxisID> is one axis of the controller.

<Velocity> is the velocity value in physical units/s.

Response: None
Troubleshooting: Illegal axis identifiers
Notes: The VEL setting only takes effect when the specified axis is

in closed-loop operation (servo mode ON).

The lowest possible value for <Velocity> is 0.

The velocity can be changed with VEL while the axis is
moving.

VEL changes the value of the Closed-Loop Velocity (Phys.

8 GCS Commands

200 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Unit/s) parameter (ID 0x49) in the volatile memory of C-
863.12. The parameter value can be stored as default with
WPA (p. 201), for details see "Adapting Settings" (p. 227).

The maximum value that can be set with the VEL
command is specified by the Maximum Closed-Loop
Velocity (Phys. Unit/s) parameter, ID 0xA.

VEL? (Get Closed-Loop Velocity)

Description: Queries the commanded velocity.

If no arguments are specified, queries the value of all axes.

Format: VEL? [{<AxisID>}]
Arguments: <AxisID> is one axis of the controller.
Response: {<AxisID>"="<float> LF}

where

<float> is the currently valid velocity value commanded in
physical units per second.

Notes: VEL? queries the velocity value for closed-loop operation.

VER? (Get Versions Of Firmware And Drivers)

Description: Gets the versions of the firmware of the C-863.12 as well
as of further components like, for example, drivers and
libraries.

Format: VER?
Arguments: None
Response {<string1>":" <string2> [<string3>]LF}

where

<string1> is the name of the component;
<string2> is the version information of the component
<string1>;
<string3> is an optional note.

WAC (Wait For Condition)

Description: Waits until a specified condition of the following type
occurs: a specified value is compared with a queried value

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 201

according a specified rule.

Can only be used in macros.

See also the MEX command (p. 174).

Format: WAC <CMD?> <OP> <value>
Arguments <CMD?> is one query command in its usual notation. The

response has to be a single value and not more. For an
example see below.

<OP> is the operator to be used. The following operators
are possible:
= <= < > >= !=
Important: There must be a blank space before and after
the operator!

<value> is the value to be compared with the response to
<CMD?>.

Response: None
Example: Send:

MAC BEG LPMOTION
MVR 1 1
 WAC ONT? 1 = 1
MVR 1 -1
 WAC ONT? 1 = 1
MAC START LPMOTION
MAC END
MAC START LPMOTION

Note: Macro LPMOTION is first recorded and then started.
WAC ONT? 1 = 1 waits until the response to ONT? 1 is 1=1.
To form an infinite loop, the macro calls itself.

WPA (Save Parameters To Non-Volatile Memory)

Description: Writes the currently valid value of a parameter of a
specified element from volatile memory (RAM) to
nonvolatile memory. The values saved this way become
the default values.

Note: If the current parameter values are incorrect, this
can cause a fault in the system. Make sure that the
parameter settings are correct before you execute the
WPA command.

8 GCS Commands

202 Version: 2.1.0 MS249E C-863.12 Mercury Controller

RAM settings not saved with WPA will be lost when the
controller is switched off or rebooted or when RPA (p.
181) is used to restore the parameters.

You can obtain a list of all available parameters with HPA?
(p. 158).

Use SPA? (p. 187) to check the current parameter settings
in volatile memory.

See SPA (p. 187) for an example.

Format: WPA <Pswd> [{<ItemID> <PamID>}]
Arguments: <Pswd> is the password for writing to the nonvolatile

memory. See below for details.

<ItemID> is the element for which a parameter is to be
saved from the volatile to the nonvolatile memory. See
below for details.

<PamID> is the parameter identifier, can be written in
hexadecimal or decimal format. See below for details.

Response: None
Troubleshooting: Illegal element identifier, wrong parameter ID, invalid

password
Notes: Parameters can be changed in volatile memory with SPA

(p. 187), ACC (p. 130), DEC (p. 141), and VEL (p. 199).

When WPA is used without specifying any arguments
except the password, the currently valid values of all
parameters affected by the specified password are saved.
Otherwise only one single parameter can be saved per
WPA command.

Note that the number of write cycles in the nonvolatile
memory is limited. Write default settings only if
necessary.

Valid passwords: The password for writing to the nonvolatile memory is
"100".

Available element
IDs and
parameter IDs:

An element is an axis (the identifier can be changed with
SAI (p. 183)) or the entire system. Refer to "Commandable
Elements" (p. 17) for further information.

Valid parameter IDs are specified in "Parameter Overview"
(p. 236).

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 203

8.7 Error Codes

The error codes listed here are those of the PI General Command Set. As such, some may be not
relevant to your controller and will simply never occur.

Controller Errors

0 PI_CNTR_NO_ERROR No error

1 PI_CNTR_PARAM_SYNTAX Parameter syntax error
2 PI_CNTR_UNKNOWN_COMMAND Unknown command
3 PI_CNTR_COMMAND_TOO_LONG Command length out of limits

or command buffer overrun
4 PI_CNTR_SCAN_ERROR Error while scanning
5 PI_CNTR_MOVE_WITHOUT_REF_OR_NO_

SERVO
Unallowable move attempted
on unreferenced axis, or
move attempted with servo
off

6 PI_CNTR_INVALID_SGA_PARAM Parameter for SGA not valid
7 PI_CNTR_POS_OUT_OF_LIMITS Position out of limits
8 PI_CNTR_VEL_OUT_OF_LIMITS Velocity out of limits
9 PI_CNTR_SET_PIVOT_NOT_POSSIBLE Attempt to set pivot point

while U,V and W not all 0
10 PI_CNTR_STOP Controller was stopped by

command
11 PI_CNTR_SST_OR_SCAN_RANGE Parameter for SST or for one

of the embedded scan
algorithms out of range

12 PI_CNTR_INVALID_SCAN_AXES Invalid axis combination for
fast scan

13 PI_CNTR_INVALID_NAV_PARAM Parameter for NAV out of
range

14 PI_CNTR_INVALID_ANALOG_INPUT Invalid analog channel
15 PI_CNTR_INVALID_AXIS_IDENTIFIER Invalid axis identifier
16 PI_CNTR_INVALID_STAGE_NAME Unknown stage name
17 PI_CNTR_PARAM_OUT_OF_RANGE Parameter out of range
18 PI_CNTR_INVALID_MACRO_NAME Invalid macro name
19 PI_CNTR_MACRO_RECORD Error while recording macro
20 PI_CNTR_MACRO_NOT_FOUND Macro not found
21 PI_CNTR_AXIS_HAS_NO_BRAKE Axis has no brake
22 PI_CNTR_DOUBLE_AXIS Axis identifier specified more

than once

8 GCS Commands

204 Version: 2.1.0 MS249E C-863.12 Mercury Controller

23 PI_CNTR_ILLEGAL_AXIS Illegal axis
24 PI_CNTR_PARAM_NR Incorrect number of

parameters
25 PI_CNTR_INVALID_REAL_NR Invalid floating point number
26 PI_CNTR_MISSING_PARAM Parameter missing
27 PI_CNTR_SOFT_LIMIT_OUT_OF_RANGE Soft limit out of range
28 PI_CNTR_NO_MANUAL_PAD No manual pad found
29 PI_CNTR_NO_JUMP No more step-response

values
30 PI_CNTR_INVALID_JUMP No step-response values

recorded
31 PI_CNTR_AXIS_HAS_NO_REFERENCE Axis has no reference sensor
32 PI_CNTR_STAGE_HAS_NO_LIM_SWITCH Axis has no limit switch
33 PI_CNTR_NO_RELAY_CARD No relay card installed
34 PI_CNTR_CMD_NOT_ALLOWED_FOR_STA

GE
Command not allowed for
selected stage(s)

35 PI_CNTR_NO_DIGITAL_INPUT No digital input installed
36 PI_CNTR_NO_DIGITAL_OUTPUT No digital output configured
37 PI_CNTR_NO_MCM No more MCM responses
38 PI_CNTR_INVALID_MCM No MCM values recorded
39 PI_CNTR_INVALID_CNTR_NUMBER Controller number invalid
40 PI_CNTR_NO_JOYSTICK_CONNECTED No joystick configured
41 PI_CNTR_INVALID_EGE_AXIS Invalid axis for electronic

gearing, axis can not be slave
42 PI_CNTR_SLAVE_POSITION_OUT_OF_RAN

GE
Position of slave axis is out of
range

43 PI_CNTR_COMMAND_EGE_SLAVE Slave axis cannot be
commanded directly when
electronic gearing is enabled

44 PI_CNTR_JOYSTICK_CALIBRATION_FAILED Calibration of joystick failed
45 PI_CNTR_REFERENCING_FAILED Referencing failed
46 PI_CNTR_OPM_MISSING OPM (Optical Power Meter)

missing
47 PI_CNTR_OPM_NOT_INITIALIZED OPM (Optical Power Meter)

not initialized or cannot be
initialized

48 PI_CNTR_OPM_COM_ERROR OPM (Optical Power Meter)
Communication Error

49 PI_CNTR_MOVE_TO_LIMIT_SWITCH_FAILE
D

Move to limit switch failed

50 PI_CNTR_REF_WITH_REF_DISABLED Attempt to reference axis

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 205

with referencing disabled
51 PI_CNTR_AXIS_UNDER_JOYSTICK_CONTRO

L
Selected axis is controlled by
joystick

52 PI_CNTR_COMMUNICATION_ERROR Controller detected
communication error

53 PI_CNTR_DYNAMIC_MOVE_IN_PROCESS MOV! motion still in progress
54 PI_CNTR_UNKNOWN_PARAMETER Unknown parameter
55 PI_CNTR_NO_REP_RECORDED No commands were recorded

with REP
56 PI_CNTR_INVALID_PASSWORD Password invalid
57 PI_CNTR_INVALID_RECORDER_CHAN Data Record Table does not

exist
58 PI_CNTR_INVALID_RECORDER_SRC_OPT Source does not exist;

number too low or too high
59 PI_CNTR_INVALID_RECORDER_SRC_CHAN Source Record Table number

too low or too high
60 PI_CNTR_PARAM_PROTECTION Protected Param: current

Command Level (CCL) too low
61 PI_CNTR_AUTOZERO_RUNNING Command execution not

possible while Autozero is
running

62 PI_CNTR_NO_LINEAR_AXIS Autozero requires at least one
linear axis

63 PI_CNTR_INIT_RUNNING Initialization still in progress
64 PI_CNTR_READ_ONLY_PARAMETER Parameter is read-only
65 PI_CNTR_PAM_NOT_FOUND Parameter not found in non-

volatile memory
66 PI_CNTR_VOL_OUT_OF_LIMITS Voltage out of limits
67 PI_CNTR_WAVE_TOO_LARGE Not enough memory available

for requested wave curve
68 PI_CNTR_NOT_ENOUGH_DDL_MEMORY Not enough memory available

for DDL table; DDL can not be
started

69 PI_CNTR_DDL_TIME_DELAY_TOO_LARGE Time delay larger than DDL
table; DDL can not be started

70 PI_CNTR_DIFFERENT_ARRAY_LENGTH The requested arrays have
different lengths; query them
separately

71 PI_CNTR_GEN_SINGLE_MODE_RESTART Attempt to restart the
generator while it is running
in single step mode

72 PI_CNTR_ANALOG_TARGET_ACTIVE Motion commands and wave
generator activation are not

8 GCS Commands

206 Version: 2.1.0 MS249E C-863.12 Mercury Controller

allowed when analog target is
active

73 PI_CNTR_WAVE_GENERATOR_ACTIVE Motion commands are not
allowed when wave generator
is active

74 PI_CNTR_AUTOZERO_DISABLED No sensor channel or no piezo
channel connected to
selected axis (sensor and
piezo matrix)

75 PI_CNTR_NO_WAVE_SELECTED Generator started (WGO)
without having selected a
wave table (WSL).

76 PI_CNTR_IF_BUFFER_OVERRUN Interface buffer did overrun
and command couldn't be
received correctly

77 PI_CNTR_NOT_ENOUGH_RECORDED_DAT
A

Data Record Table does not
hold enough recorded data

78 PI_CNTR_TABLE_DEACTIVATED Data Record Table is not
configured for recording

79 PI_CNTR_OPENLOOP_VALUE_SET_WHEN_
SERVO_ON

Open-loop commands (SVA,
SVR) are not allowed when
servo is on

80 PI_CNTR_RAM_ERROR Hardware error affecting RAM
81 PI_CNTR_MACRO_UNKNOWN_COMMAN

D
Not macro command

82 PI_CNTR_MACRO_PC_ERROR Macro counter out of range
83 PI_CNTR_JOYSTICK_ACTIVE Joystick is active
84 PI_CNTR_MOTOR_IS_OFF Motor is off
85 PI_CNTR_ONLY_IN_MACRO Macro-only command
86 PI_CNTR_JOYSTICK_UNKNOWN_AXIS Invalid joystick axis
87 PI_CNTR_JOYSTICK_UNKNOWN_ID Joystick unknown
88 PI_CNTR_REF_MODE_IS_ON Move without referenced

stage
89 PI_CNTR_NOT_ALLOWED_IN_CURRENT_M

OTION_MODE
Command not allowed in
current motion mode

90 PI_CNTR_DIO_AND_TRACING_NOT_POSSI
BLE

No tracing possible while
digital IOs are used on this
HW revision. Reconnect to
switch operation mode.

91 PI_CNTR_COLLISION Move not possible, would
cause collision

92 PI_CNTR_SLAVE_NOT_FAST_ENOUGH Stage is not capable of
following the master. Check
the gear ratio.

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 207

93 PI_CNTR_CMD_NOT_ALLOWED_WHILE_A
XIS_IN_MOTION

This command is not allowed
while the affected axis or its
master is in motion.

94 PI_CNTR_OPEN_LOOP_JOYSTICK_ENABLE
D

Servo cannot be switched on
when open-loop joystick
control is activated.

95 PI_CNTR_INVALID_SERVO_STATE_FOR_PA
RAMETER

This parameter cannot be
changed in current servo
mode.

96 PI_CNTR_UNKNOWN_STAGE_NAME Unknown stage name
97 PI_CNTR_INVALID_VALUE_LENGTH Invalid length of value (too

much characters)
98 PI_CNTR_AUTOZERO_FAILED AutoZero procedure was not

successful
99 PI_CNTR_SENSOR_VOLTAGE_OFF Sensor voltage is off
100 PI_LABVIEW_ERROR PI driver for use with NI

LabVIEW reports error. See
source control for details.

200 PI_CNTR_NO_AXIS No stage connected to axis
201 PI_CNTR_NO_AXIS_PARAM_FILE File with axis parameters not

found
202 PI_CNTR_INVALID_AXIS_PARAM_FILE Invalid axis parameter file
203 PI_CNTR_NO_AXIS_PARAM_BACKUP Backup file with axis

parameters not found
204 PI_CNTR_RESERVED_204 PI internal error code 204
205 PI_CNTR_SMO_WITH_SERVO_ON SMO with servo on
206 PI_CNTR_UUDECODE_INCOMPLETE_HEAD

ER
uudecode: incomplete header

207 PI_CNTR_UUDECODE_NOTHING_TO_DEC
ODE

uudecode: nothing to decode

208 PI_CNTR_UUDECODE_ILLEGAL_FORMAT uudecode: illegal UUE format
209 PI_CNTR_CRC32_ERROR CRC32 error
210 PI_CNTR_ILLEGAL_FILENAME Illegal file name (must be 8-0

format)
211 PI_CNTR_FILE_NOT_FOUND File not found on controller
212 PI_CNTR_FILE_WRITE_ERROR Error writing file on controller
213 PI_CNTR_DTR_HINDERS_VELOCITY_CHAN

GE
VEL command not allowed in
DTR Command Mode

214 PI_CNTR_POSITION_UNKNOWN Position calculations failed
215 PI_CNTR_CONN_POSSIBLY_BROKEN The connection between

controller and stage may be
broken

8 GCS Commands

208 Version: 2.1.0 MS249E C-863.12 Mercury Controller

216 PI_CNTR_ON_LIMIT_SWITCH The connected stage has
driven into a limit switch,
some controllers need CLR to
resume operation

217 PI_CNTR_UNEXPECTED_STRUT_STOP Strut test command failed
because of an unexpected
strut stop

218 PI_CNTR_POSITION_BASED_ON_ESTIMATI
ON

While MOV! is running
position can only be
estimated!

219 PI_CNTR_POSITION_BASED_ON_INTERPOL
ATION

Position was calculated during
MOV motion

220 PI_CNTR_INTERPOLATION_FIFO_UNDERR
UN

FIFO buffer underrun during
interpolation

221 PI_CNTR_INTERPOLATION_FIFO_OVERFLO
W

FIFO buffer overflow during
interpolation

230 PI_CNTR_INVALID_HANDLE Invalid handle
231 PI_CNTR_NO_BIOS_FOUND No bios found
232 PI_CNTR_SAVE_SYS_CFG_FAILED Save system configuration

failed
233 PI_CNTR_LOAD_SYS_CFG_FAILED Load system configuration

failed
301 PI_CNTR_SEND_BUFFER_OVERFLOW Send buffer overflow
302 PI_CNTR_VOLTAGE_OUT_OF_LIMITS Voltage out of limits
303 PI_CNTR_OPEN_LOOP_MOTION_SET_WH

EN_SERVO_ON
Open-loop motion attempted
when servo ON

304 PI_CNTR_RECEIVING_BUFFER_OVERFLOW Received command is too
long

305 PI_CNTR_EEPROM_ERROR Error while reading/writing
EEPROM

306 PI_CNTR_I2C_ERROR Error on I2C bus
307 PI_CNTR_RECEIVING_TIMEOUT Timeout while receiving

command
308 PI_CNTR_TIMEOUT A lengthy operation has not

finished in the expected time
309 PI_CNTR_MACRO_OUT_OF_SPACE Insufficient space to store

macro
310 PI_CNTR_EUI_OLDVERSION_CFGDATA Configuration data has old

version number
311 PI_CNTR_EUI_INVALID_CFGDATA Invalid configuration data
333 PI_CNTR_HARDWARE_ERROR Internal hardware error
400 PI_CNTR_WAV_INDEX_ERROR Wave generator index error

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 209

401 PI_CNTR_WAV_NOT_DEFINED Wave table not defined
402 PI_CNTR_WAV_TYPE_NOT_SUPPORTED Wave type not supported
403 PI_CNTR_WAV_LENGTH_EXCEEDS_LIMIT Wave length exceeds limit
404 PI_CNTR_WAV_PARAMETER_NR Wave parameter number

error
405 PI_CNTR_WAV_PARAMETER_OUT_OF_LI

MIT
Wave parameter out of range

406 PI_CNTR_WGO_BIT_NOT_SUPPORTED WGO command bit not
supported

500 PI_CNTR_EMERGENCY_STOP_BUTTON_AC
TIVATED

The \"red knob\" is still set
and disables system

501 PI_CNTR_EMERGENCY_STOP_BUTTON_W
AS_ACTIVATED

The \"red knob\" was
activated and still disables
system - reanimation
required

502 PI_CNTR_REDUNDANCY_LIMIT_EXCEEDED Position consistency check
failed

503 PI_CNTR_COLLISION_SWITCH_ACTIVATED Hardware collision sensor(s)
are activated

504 PI_CNTR_FOLLOWING_ERROR Strut following error
occurred, e.g. caused by
overload or encoder failure

505 PI_CNTR_SENSOR_SIGNAL_INVALID One sensor signal is not valid
506 PI_CNTR_SERVO_LOOP_UNSTABLE Servo loop was unstable due

to wrong parameter setting
and switched off to avoid
damage.

507 PI_CNTR_LOST_SPI_SLAVE_CONNECTION Digital connection to external
SPI slave device is lost

508 PI_CNTR_MOVE_ATTEMPT_NOT_PERMITT
ED

Move attempt not permitted
due to customer or limit
settings

509 PI_CNTR_TRIGGER_EMERGENCY_STOP Emergency stop caused by
trigger input

530 PI_CNTR_NODE_DOES_NOT_EXIST A command refers to a node
that does not exist

531 PI_CNTR_PARENT_NODE_DOES_NOT_EXIS
T

A command refers to a node
that has no parent node

532 PI_CNTR_NODE_IN_USE Attempt to delete a node that
is in use

533 PI_CNTR_NODE_DEFINITION_IS_CYCLIC Definition of a node is cyclic

8 GCS Commands

210 Version: 2.1.0 MS249E C-863.12 Mercury Controller

536 PI_CNTR_HEXAPOD_IN_MOTION Transformation cannot be
defined as long as Hexapod is
in motion

537 PI_CNTR_TRANSFORMATION_TYPE_NOT_
SUPPORTED

Transformation node cannot
be activated

539 PI_CNTR_NODE_PARENT_IDENTICAL_TO_
CHILD

A node cannot be linked to
itself

540 PI_CNTR_NODE_DEFINITION_INCONSISTE
NT

Node definition is erroneous
or not complete (replace or
delete it)

542 PI_CNTR_NODES_NOT_IN_SAME_CHAIN The nodes are not part of the
same chain

543 PI_CNTR_NODE_MEMORY_FULL Unused nodes must be
deleted before new nodes
can be stored

544 PI_CNTR_PIVOT_POINT_FEATURE_NOT_S
UPPORTED

With some transformations
pivot point usage is not
supported

545 PI_CNTR_SOFTLIMITS_INVALID Soft limits invalid due to
changes in coordinate system

546 PI_CNTR_CS_WRITE_PROTECTED Coordinate system is write
protected

547 PI_CNTR_CS_CONTENT_FROM_CONFIG_FI
LE

Coordinate system cannot be
changed because its content
is loaded from a configuration
file

548 PI_CNTR_CS_CANNOT_BE_LINKED Coordinate system may not
be linked

549 PI_CNTR_KSB_CS_ROTATION_ONLY A KSB-type coordinate system
can only be rotated by
multiples of 90 degrees

551 PI_CNTR_CS_DATA_CANNOT_BE_QUERIE
D

This query is not supported
for this coordinate system
type

552 PI_CNTR_CS_COMBINATION_DOES_NOT_
EXIST

This combination of work-
and-tool coordinate systems
does not exist

553 PI_CNTR_CS_COMBINATION_INVALID The combination must consist
of one work and one tool
coordinate system

554 PI_CNTR_CS_TYPE_DOES_NOT_EXIST This coordinate system type
does not exist

555 PI_CNTR_UNKNOWN_ERROR BasMac: unknown controller
error

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 211

556 PI_CNTR_CS_TYPE_NOT_ACTIVATED No coordinate system of this
type is activated

557 PI_CNTR_CS_NAME_INVALID Name of coordinate system is
invalid

558 PI_CNTR_CS_GENERAL_FILE_MISSING File with stored CS systems is
missing or erroneous

559 PI_CNTR_CS_LEVELING_FILE_MISSING File with leveling CS is missing
or erroneous

601 PI_CNTR_NOT_ENOUGH_MEMORY not enough memory

602 PI_CNTR_HW_VOLTAGE_ERROR hardware voltage error

603 PI_CNTR_HW_TEMPERATURE_ERROR hardware temperature out of
range

604 PI_CNTR_POSITION_ERROR_TOO_HIGH Position error of any axis in
the system is too high

606 PI_CNTR_INPUT_OUT_OF_RANGE Maximum value of input
signal has been exceeded

607 PI_CNTR_NO_INTEGER Value is not integer

608 PI_CNTR_FAST_ALIGNMENT_PROCESS_IS_
NOT_RUNNING

Fast alignment process
cannot be paused because it
is not running

609 PI_CNTR_FAST_ALIGNMENT_PROCESS_IS_
NOT_PAUSED

Fast alignment process
cannot be restarted/resumed
because it is not paused

650 PI_CNTR_UNABLE_TO_SET_PARAM_WITH
_SPA

Parameter could not be set
with SPA - SEP needed?

651 PI_CNTR_PHASE_FINDING_ERROR Phase finding error

652 PI_CNTR_SENSOR_SETUP_ERROR Sensor setup error

653 PI_CNTR_SENSOR_COMM_ERROR Sensor communication error

654 PI_CNTR_MOTOR_AMPLIFIER_ERROR Motor amplifier error

655 PI_CNTR_OVER_CURR_PROTEC_TRIGGERE
D_BY_I2T

Overcurrent protection
triggered by I2T-module

656 PI_CNTR_OVER_CURR_PROTEC_TRIGGERE
D_BY_AMP_MODULE

Overcurrent protection
triggered by amplifier module

657 PI_CNTR_SAFETY_STOP_TRIGGERED Safety stop triggered

658 PI_SENSOR_OFF Sensor off?

8 GCS Commands

212 Version: 2.1.0 MS249E C-863.12 Mercury Controller

659 PI_CNTR_PARAM_CONFLICT Parameter could not be set.
Conflict with another
parameter.

700 PI_CNTR_COMMAND_NOT_ALLOWED_IN
_EXTERNAL_MODE

Command not allowed in
external mode

710 PI_CNTR_EXTERNAL_MODE_ERROR External mode
communication error

715 PI_CNTR_INVALID_MODE_OF_OPERATION Invalid mode of operation

716 PI_CNTR_FIRMWARE_STOPPED_BY_CMD Firmware stopped by
command (#27)

717 PI_CNTR_EXTERNAL_MODE_DRIVER_MISS
ING

External mode driver missing

718 PI_CNTR_CONFIGURATION_FAILURE_EXTE
RNAL_MODE

Missing or incorrect
configuration of external
mode

719 PI_CNTR_EXTERNAL_MODE_CYCLETIME_I
NVALID

External mode cycletime
invalid

720 PI_CNTR_BRAKE_ACTIVATED Brake is activated

725 PI_CNTR_DRIVE_STATE_TRANSITION_ERR
OR

Drive state transition error

731 PI_CNTR_SURFACEDETECTION_RUNNING Command not allowed while
surface detection is running

732 PI_CNTR_SURFACEDETECTION_FAILED Last surface detection failed

733 PI_CNTR_FIELDBUS_IS_ACTIVE Fieldbus is active and is
blocking GCS control
commands

1000 PI_CNTR_TOO_MANY_NESTED_MACROS Too many nested macros

1001 PI_CNTR_MACRO_ALREADY_DEFINED Macro already defined

1002 PI_CNTR_NO_MACRO_RECORDING Macro recording not
activated

1003 PI_CNTR_INVALID_MAC_PARAM Invalid parameter for MAC

1004 PI_CNTR_RESERVED_1004 PI internal error code 1004

1005 PI_CNTR_CONTROLLER_BUSY Controller is busy with some
lengthy operation (e.g.
reference move, fast scan
algorithm)

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 213

1006 PI_CNTR_INVALID_IDENTIFIER Invalid identifier (invalid
special characters, ...)

1007 PI_CNTR_UNKNOWN_VARIABLE_OR_ARG
UMENT

Variable or argument not
defined

1008 PI_CNTR_RUNNING_MACRO Controller is (already) running
a macro

1009 PI_CNTR_MACRO_INVALID_OPERATOR Invalid or missing operator for
condition. Check necessary
spaces around operator.

1010 PI_CNTR_MACRO_NO_ANSWER No response was received
while executing
WAC/MEX/JRC/...

1011 PI_CMD_NOT_VALID_IN_MACRO_MODE Command not valid during
macro execution

1012 PI_CNTR_ERROR_IN_MACRO Error occured during macro
execution

1013 PI_CNTR_NO_MACRO_OR_EMPTY No macro with given name on
controller, or macro is empty

1015 PI_CNTR_INVALID_ARGUMENT One or more arguments given
to function is invalid (empty
string, index out of range, ...)

1024 PI_CNTR_MOTION_ERROR Motion error: position error
too large, servo is switched
off automatically

1025 PI_CNTR_MAX_MOTOR_OUTPUT_REACHE
D

Maximum motor output
reached

1028 PI_CNTR_UNKNOWN_CHANNEL_IDENTIFI
ER

Unknown channel identifier

1063 PI_CNTR_EXT_PROFILE_UNALLOWED_CM
D

User Profile Mode: Command
is not allowed, check for
required preparatory
commands

1064 PI_CNTR_EXT_PROFILE_EXPECTING_MOTI
ON_ERROR

User Profile Mode: First
target position in User Profile
is too far from current
position

1065 PI_CNTR_PROFILE_ACTIVE Controller is (already) in User
Profile Mode

1066 PI_CNTR_PROFILE_INDEX_OUT_OF_RANG
E

User Profile Mode: Block or
Data Set index out of allowed
range

1071 PI_CNTR_PROFILE_OUT_OF_MEMORY User Profile Mode: Out of
memory

8 GCS Commands

214 Version: 2.1.0 MS249E C-863.12 Mercury Controller

1072 PI_CNTR_PROFILE_WRONG_CLUSTER User Profile Mode: Cluster is
not assigned to this axis

1073 PI_CNTR_PROFILE_UNKNOWN_CLUSTER_I
DENTIFIER

Unknown cluster identifier

1090 PI_CNTR_TOO_MANY_TCP_CONNECTIONS
_OPEN

There are too many open
tcpip connections

2000 PI_CNTR_ALREADY_HAS_SERIAL_NUMBER Controller already has a serial
number

2100 PI_CNTR_FEATURE_LICENSE_INVALID Entered license is invalid

4000 PI_CNTR_SECTOR_ERASE_FAILED Sector erase failed

4001 PI_CNTR_FLASH_PROGRAM_FAILED Flash program failed
4002 PI_CNTR_FLASH_READ_FAILED Flash read failed
4003 PI_CNTR_HW_MATCHCODE_ERROR HW match code

missing/invalid
4004 PI_CNTR_FW_MATCHCODE_ERROR FW match code

missing/invalid
4005 PI_CNTR_HW_VERSION_ERROR HW version missing/invalid
4006 PI_CNTR_FW_VERSION_ERROR FW version missing/invalid
4007 PI_CNTR_FW_UPDATE_ERROR FW update failed
4008 PI_CNTR_FW_CRC_PAR_ERROR FW Parameter CRC wrong

4009 PI_CNTR_FW_CRC_FW_ERROR FW CRC wrong

5000 PI_CNTR_INVALID_PCC_SCAN_DATA PicoCompensation scan data
is not valid

5001 PI_CNTR_PCC_SCAN_RUNNING PicoCompensation is running,
some actions can not be
executed during
scanning/recording

5002 PI_CNTR_INVALID_PCC_AXIS Given axis cannot be defined
as PPC axis

5003 PI_CNTR_PCC_SCAN_OUT_OF_RANGE Defined scan area is larger
than the travel range

5004 PI_CNTR_PCC_TYPE_NOT_EXISTING Given PicoCompensation type
is not defined

5005 PI_CNTR_PCC_PAM_ERROR PicoCompensation parameter
error

5006 PI_CNTR_PCC_TABLE_ARRAY_TOO_LARGE PicoCompensation table is
larger than maximum table

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 215

length

5100 PI_CNTR_NEXLINE_ERROR Common error in NEXLINE®
firmware module

5101 PI_CNTR_CHANNEL_ALREADY_USED Output channel for NEXLINE®
can not be redefined for
other usage

5102 PI_CNTR_NEXLINE_TABLE_TOO_SMALL Memory for NEXLINE® signals
is too small

5103 PI_CNTR_RNP_WITH_SERVO_ON RNP can not be executed if
axis is in closed loop

5104 PI_CNTR_RNP_NEEDED Relax procedure (RNP)
needed

5200 PI_CNTR_AXIS_NOT_CONFIGURED Axis must be configured for
this action

5300 PI_CNTR_FREQU_ANALYSIS_FAILED Frequency analysis failed

5301 PI_CNTR_FREQU_ANALYSIS_RUNNING Another frequency analysis is
running

6000 PI_CNTR_SENSOR_ABS_INVALID_VALUE Invalid preset value of
absolute sensor

6001 PI_CNTR_SENSOR_ABS_WRITE_ERROR Error while writing to sensor

6002 PI_CNTR_SENSOR_ABS_READ_ERROR Error while reading from
sensor

6003 PI_CNTR_SENSOR_ABS_CRC_ERROR Checksum error of absolute
sensor

6004 PI_CNTR_SENSOR_ABS_ERROR General error of absolute
sensor

6005 PI_CNTR_SENSOR_ABS_OVERFLOW Overflow of absolute sensor
position

Interface Errors

0 COM_NO_ERROR No error occurred during
function call

-1 COM_ERROR Error during com operation
(could not be specified)

-2 SEND_ERROR Error while sending data
-3 REC_ERROR Error while receiving data
-4 NOT_CONNECTED_ERROR Not connected (no port with

given ID open)
-5 COM_BUFFER_OVERFLOW Buffer overflow

8 GCS Commands

216 Version: 2.1.0 MS249E C-863.12 Mercury Controller

-6 CONNECTION_FAILED Error while opening port
-7 COM_TIMEOUT Timeout error
-8 COM_MULTILINE_RESPONSE There are more lines waiting

in buffer
-9 COM_INVALID_ID There is no interface or DLL

handle with the given ID
-10 COM_NOTIFY_EVENT_ERROR Event/message for

notification could not be
opened

-11 COM_NOT_IMPLEMENTED Function not supported by
this interface type

-12 COM_ECHO_ERROR Error while sending "echoed"
data

-13 COM_GPIB_EDVR IEEE488: System error
-14 COM_GPIB_ECIC IEEE488: Function requires

GPIB board to be CIC
-15 COM_GPIB_ENOL IEEE488: Write function

detected no listeners
-16 COM_GPIB_EADR IEEE488: Interface board not

addressed correctly
-17 COM_GPIB_EARG IEEE488: Invalid argument to

function call
-18 COM_GPIB_ESAC IEEE488: Function requires

GPIB board to be SAC
-19 COM_GPIB_EABO IEEE488: I/O operation

aborted
-20 COM_GPIB_ENEB IEEE488: Interface board not

found
-21 COM_GPIB_EDMA IEEE488: Error performing

DMA
-22 COM_GPIB_EOIP IEEE488: I/O operation

started before previous
operation completed

-23 COM_GPIB_ECAP IEEE488: No capability for
intended operation

-24 COM_GPIB_EFSO IEEE488: File system
operation error

-25 COM_GPIB_EBUS IEEE488: Command error
during device call

-26 COM_GPIB_ESTB IEEE488: Serial poll-status
byte lost

-27 COM_GPIB_ESRQ IEEE488: SRQ remains
asserted

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 217

-28 COM_GPIB_ETAB IEEE488: Return buffer full
-29 COM_GPIB_ELCK IEEE488: Address or board

locked
-30 COM_RS_INVALID_DATA_BITS RS-232: 5 data bits with 2

stop bits is an invalid
combination, as is 6, 7, or 8
data bits with 1.5 stop bits

-31 COM_ERROR_RS_SETTINGS RS-232: Error configuring the
COM port

-32 COM_INTERNAL_RESOURCES_ERROR Error dealing with internal
system resources (events,
threads, ...)

-33 COM_DLL_FUNC_ERROR A DLL or one of the required
functions could not be loaded

-34 COM_FTDIUSB_INVALID_HANDLE FTDIUSB: invalid handle
-35 COM_FTDIUSB_DEVICE_NOT_FOUND FTDIUSB: device not found
-36 COM_FTDIUSB_DEVICE_NOT_OPENED FTDIUSB: device not opened
-37 COM_FTDIUSB_IO_ERROR FTDIUSB: IO error
-38 COM_FTDIUSB_INSUFFICIENT_RESOURCES FTDIUSB: insufficient

resources
-39 COM_FTDIUSB_INVALID_PARAMETER FTDIUSB: invalid parameter
-40 COM_FTDIUSB_INVALID_BAUD_RATE FTDIUSB: invalid baud rate
-41 COM_FTDIUSB_DEVICE_NOT_OPENED_FO

R_ERASE
FTDIUSB: device not opened
for erase

-42 COM_FTDIUSB_DEVICE_NOT_OPENED_FO
R_WRITE

FTDIUSB: device not opened
for write

-43 COM_FTDIUSB_FAILED_TO_WRITE_DEVIC
E

FTDIUSB: failed to write
device

-44 COM_FTDIUSB_EEPROM_READ_FAILED FTDIUSB: EEPROM read failed
-45 COM_FTDIUSB_EEPROM_WRITE_FAILED FTDIUSB: EEPROM write

failed
-46 COM_FTDIUSB_EEPROM_ERASE_FAILED FTDIUSB: EEPROM erase

failed
-47 COM_FTDIUSB_EEPROM_NOT_PRESENT FTDIUSB: EEPROM not

present
-48 COM_FTDIUSB_EEPROM_NOT_PROGRAM

MED
FTDIUSB: EEPROM not
programmed

-49 COM_FTDIUSB_INVALID_ARGS FTDIUSB: invalid arguments
-50 COM_FTDIUSB_NOT_SUPPORTED FTDIUSB: not supported
-51 COM_FTDIUSB_OTHER_ERROR FTDIUSB: other error
-52 COM_PORT_ALREADY_OPEN Error while opening the COM

port: was already open

8 GCS Commands

218 Version: 2.1.0 MS249E C-863.12 Mercury Controller

-53 COM_PORT_CHECKSUM_ERROR Checksum error in received
data from COM port

-54 COM_SOCKET_NOT_READY Socket not ready, you should
call the function again

-55 COM_SOCKET_PORT_IN_USE Port is used by another socket
-56 COM_SOCKET_NOT_CONNECTED Socket not connected (or not

valid)
-57 COM_SOCKET_TERMINATED Connection terminated (by

peer)
-58 COM_SOCKET_NO_RESPONSE Can't connect to peer
-59 COM_SOCKET_INTERRUPTED Operation was interrupted by

a nonblocked signal
-60 COM_PCI_INVALID_ID No device with this ID is

present
-61 COM_PCI_ACCESS_DENIED Driver could not be opened

(on Vista: run as
administrator!)

-62 COM_SOCKET_HOST_NOT_FOUND Host not found
-63 COM_DEVICE_CONNECTED Device already connected
-64 COM_INVALID_COM_PORT Invalid COM port
-65 COM_USB_DEVICE_NOT_FOUND USB device not found
-66 COM_NO_USB_DRIVER No USB driver installed
-67 COM_USB_NOT_SUPPORTED USB is not supported

DLL Errors

-1001 PI_UNKNOWN_AXIS_IDENTIFIER Unknown axis identifier
-1002 PI_NR_NAV_OUT_OF_RANGE Number for NAV out of range-

-must be in [1,10000]
-1003 PI_INVALID_SGA Invalid value for SGA--must be

one of 1, 10, 100, 1000
-1004 PI_UNEXPECTED_RESPONSE Controller sent unexpected

response
-1005 PI_NO_MANUAL_PAD No manual control pad

installed, calls to SMA and
related commands are not
allowed

-1006 PI_INVALID_MANUAL_PAD_KNOB Invalid number for manual
control pad knob

-1007 PI_INVALID_MANUAL_PAD_AXIS Axis not currently controlled
by a manual control pad

-1008 PI_CONTROLLER_BUSY Controller is busy with some

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 219

lengthy operation (e.g.,
reference move, fast scan
algorithm)

-1009 PI_THREAD_ERROR Internal error--could not start
thread

-1010 PI_IN_MACRO_MODE Controller is (already) in
macro mode--command not
valid in macro mode

-1011 PI_NOT_IN_MACRO_MODE Controller not in macro
mode--command not valid
unless macro mode active

-1012 PI_MACRO_FILE_ERROR Could not open file to write or
read macro

-1013 PI_NO_MACRO_OR_EMPTY No macro with given name on
controller, or macro is empty

-1014 PI_MACRO_EDITOR_ERROR Internal error in macro editor
-1015 PI_INVALID_ARGUMENT One or more arguments given

to function is invalid (empty
string, index out of range, ...)

-1016 PI_AXIS_ALREADY_EXISTS Axis identifier is already in use
by a connected stage

-1017 PI_INVALID_AXIS_IDENTIFIER Invalid axis identifier
-1018 PI_COM_ARRAY_ERROR Could not access array data in

COM server
-1019 PI_COM_ARRAY_RANGE_ERROR Range of array does not fit

the number of parameters
-1020 PI_INVALID_SPA_CMD_ID Invalid parameter ID given to

SPA or SPA?
-1021 PI_NR_AVG_OUT_OF_RANGE Number for AVG out of range-

-must be >0
-1022 PI_WAV_SAMPLES_OUT_OF_RANGE Incorrect number of samples

given to WAV
-1023 PI_WAV_FAILED Generation of wave failed
-1024 PI_MOTION_ERROR Motion error: position error

too large, servo is switched
off automatically

-1025 PI_RUNNING_MACRO Controller is (already) running
a macro

-1026 PI_PZT_CONFIG_FAILED Configuration of PZT stage or
amplifier failed

-1027 PI_PZT_CONFIG_INVALID_PARAMS Current settings are not valid
for desired configuration

-1028 PI_UNKNOWN_CHANNEL_IDENTIFIER Unknown channel identifier

8 GCS Commands

220 Version: 2.1.0 MS249E C-863.12 Mercury Controller

-1029 PI_WAVE_PARAM_FILE_ERROR Error while reading/writing
wave generator parameter
file

-1030 PI_UNKNOWN_WAVE_SET Could not find description of
wave form. Maybe WG.INI is
missing?

-1031 PI_WAVE_EDITOR_FUNC_NOT_LOADED The WGWaveEditor DLL
function was not found at
startup

-1032 PI_USER_CANCELLED The user cancelled a dialog
-1033 PI_C844_ERROR Error from C-844 Controller
-1034 PI_DLL_NOT_LOADED DLL necessary to call function

not loaded, or function not
found in DLL

-1035 PI_PARAMETER_FILE_PROTECTED The open parameter file is
protected and cannot be
edited

-1036 PI_NO_PARAMETER_FILE_OPENED There is no parameter file
open

-1037 PI_STAGE_DOES_NOT_EXIST Selected stage does not exist
-1038 PI_PARAMETER_FILE_ALREADY_OPENED There is already a parameter

file open. Close it before
opening a new file

-1039 PI_PARAMETER_FILE_OPEN_ERROR Could not open parameter file
-1040 PI_INVALID_CONTROLLER_VERSION The version of the connected

controller is invalid
-1041 PI_PARAM_SET_ERROR Parameter could not be set

with SPA--parameter not
defined for this controller!

-1042 PI_NUMBER_OF_POSSIBLE_WAVES_EXCEE
DED

The maximum number of
wave definitions has been
exceeded

-1043 PI_NUMBER_OF_POSSIBLE_GENERATORS_
EXCEEDED

The maximum number of
wave generators has been
exceeded

-1044 PI_NO_WAVE_FOR_AXIS_DEFINED No wave defined for specified
axis

-1045 PI_CANT_STOP_OR_START_WAV Wave output to axis already
stopped/started

-1046 PI_REFERENCE_ERROR Not all axes could be
referenced

-1047 PI_REQUIRED_WAVE_NOT_FOUND Could not find parameter set
required by frequency
relation

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 221

-1048 PI_INVALID_SPP_CMD_ID Command ID given to SPP or
SPP? is not valid

-1049 PI_STAGE_NAME_ISNT_UNIQUE A stage name given to CST is
not unique

-1050 PI_FILE_TRANSFER_BEGIN_MISSING A uuencoded file transferred
did not start with "begin"
followed by the proper
filename

-1051 PI_FILE_TRANSFER_ERROR_TEMP_FILE Could not create/read file on
host PC

-1052 PI_FILE_TRANSFER_CRC_ERROR Checksum error when
transferring a file to/from the
controller

-1053 PI_COULDNT_FIND_PISTAGES_DAT The PiStages.dat database
could not be found. This file is
required to connect a stage
with the CST command

-1054 PI_NO_WAVE_RUNNING No wave being output to
specified axis

-1055 PI_INVALID_PASSWORD Invalid password
-1056 PI_OPM_COM_ERROR Error during communication

with OPM (Optical Power
Meter), maybe no OPM
connected

-1057 PI_WAVE_EDITOR_WRONG_PARAMNUM WaveEditor: Error during
wave creation, incorrect
number of parameters

-1058 PI_WAVE_EDITOR_FREQUENCY_OUT_OF_
RANGE

WaveEditor: Frequency out of
range

-1059 PI_WAVE_EDITOR_WRONG_IP_VALUE WaveEditor: Error during
wave creation, incorrect index
for integer parameter

-1060 PI_WAVE_EDITOR_WRONG_DP_VALUE WaveEditor: Error during
wave creation, incorrect index
for floating point parameter

-1061 PI_WAVE_EDITOR_WRONG_ITEM_VALUE WaveEditor: Error during
wave creation, could not
calculate value

-1062 PI_WAVE_EDITOR_MISSING_GRAPH_COM
PONENT

WaveEditor: Graph display
component not installed

-1063 PI_EXT_PROFILE_UNALLOWED_CMD User Profile Mode: Command
is not allowed, check for
required preparatory
commands

-1064 PI_EXT_PROFILE_EXPECTING_MOTION_ER User Profile Mode: First

8 GCS Commands

222 Version: 2.1.0 MS249E C-863.12 Mercury Controller

ROR target position in User Profile
is too far from current
position

-1065 PI_EXT_PROFILE_ACTIVE Controller is (already) in User
Profile Mode

-1066 PI_EXT_PROFILE_INDEX_OUT_OF_RANGE User Profile Mode: Block or
Data Set index out of allowed
range

-1067 PI_PROFILE_GENERATOR_NO_PROFILE ProfileGenerator: No profile
has been created yet

-1068 PI_PROFILE_GENERATOR_OUT_OF_LIMITS ProfileGenerator: Generated
profile exceeds limits of one
or both axes

-1069 PI_PROFILE_GENERATOR_UNKNOWN_PAR
AMETER

ProfileGenerator: Unknown
parameter ID in Set/Get
Parameter command

-1070 PI_PROFILE_GENERATOR_PAR_OUT_OF_R
ANGE

ProfileGenerator: Parameter
out of allowed range

-1071 PI_EXT_PROFILE_OUT_OF_MEMORY User Profile Mode: Out of
memory

-1072 PI_EXT_PROFILE_WRONG_CLUSTER User Profile Mode: Cluster is
not assigned to this axis

-1073 PI_UNKNOWN_CLUSTER_IDENTIFIER Unknown cluster identifier
-1074 PI_INVALID_DEVICE_DRIVER_VERSION The installed device driver

doesn't match the required
version. Please see the
documentation to determine
the required device driver
version.

-1075 PI_INVALID_LIBRARY_VERSION The library used doesn't
match the required version.
Please see the documentation
to determine the required
library version.

-1076 PI_INTERFACE_LOCKED The interface is currently
locked by another function.
Please try again later.

-1077 PI_PARAM_DAT_FILE_INVALID_VERSION Version of parameter DAT file
does not match the required
version. Current files are
available at www.pi.ws.

-1078 PI_CANNOT_WRITE_TO_PARAM_DAT_FIL
E

Cannot write to parameter
DAT file to store user defined
stage type.

-1079 PI_CANNOT_CREATE_PARAM_DAT_FILE Cannot create parameter DAT

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 223

file to store user defined
stage type.

-1080 PI_PARAM_DAT_FILE_INVALID_REVISION Parameter DAT file does not
have correct revision.

-1081 PI_USERSTAGES_DAT_FILE_INVALID_REVIS
ION

User stages DAT file does not
have correct revision.

-1082 PI_SOFTWARE_TIMEOUT Timeout Error. Some lengthy
operation did not finish
within expected time.

-1083 PI_WRONG_DATA_TYPE A function argument has an
unexpected data type.

-1084 PI_DIFFERENT_ARRAY_SIZES Length of data arrays is
different.

-1085 PI_PARAM_NOT_FOUND_IN_PARAM_DAT
_FILE

Parameter value not found in
parameter DAT file.

-1086 PI_MACRO_RECORDING_NOT_ALLOWED_I
N_THIS_MODE

Macro recording is not
allowed in this mode of
operation.

-1087 PI_USER_CANCELLED_COMMAND Command cancelled by user
input.

-1088 PI_TOO_FEW_GCS_DATA Controller sent too few GCS
data sets

-1089 PI_TOO_MANY_GCS_DATA Controller sent too many GCS
data sets

-1090 PI_GCS_DATA_READ_ERROR Communication error while
reading GCS data

-1091 PI_WRONG_NUMBER_OF_INPUT_ARGUM
ENTS

Wrong number of input
arguments.

-1092 PI_FAILED_TO_CHANGE_CCL_LEVEL Change of command level has
failed.

-1093 PI_FAILED_TO_SWITCH_OFF_SERVO Switching off the servo mode
has failed.

-1094 PI_FAILED_TO_SET_SINGLE_PARAMETER_
WHILE_PERFORMING_CST

A parameter could not be set
while performing CST: CST
was not performed
(parameters remain
unchanged).

-1095 PI_ERROR_CONTROLLER_REBOOT Connection could not be
reestablished after reboot.

-1096 PI_ERROR_AT_QHPA Sending HPA? or receiving the
response has failed.

-1097 PI_QHPA_NONCOMPLIANT_WITH_GCS HPA? response does not
comply with GCS2 syntax.

8 GCS Commands

224 Version: 2.1.0 MS249E C-863.12 Mercury Controller

-1098 PI_FAILED_TO_READ_QSPA Response to SPA? could not
be received.

-1099 PI_PAM_FILE_WRONG_VERSION Version of PAM file cannot be
handled (too old or too new)

-1100 PI_PAM_FILE_INVALID_FORMAT PAM file does not contain
required data in PAM-file
format

-1101 PI_INCOMPLETE_INFORMATION Information does not contain
all required data

-1102 PI_NO_VALUE_AVAILABLE No value for parameter
available

-1103 PI_NO_PAM_FILE_OPEN No PAM file is open
-1104 PI_INVALID_VALUE Invalid value
-1105 PI_UNKNOWN_PARAMETER Unknown parameter
-1106 PI_RESPONSE_TO_QSEP_FAILED Response to SEP? could not

be received.
-1107 PI_RESPONSE_TO_QSPA_FAILED Response to SPA? could not

be received.
-1108 PI_ERROR_IN_CST_VALIDATION Error while performing CST:

One or more parameters
were not set correctly.

-1109 PI_ERROR_PAM_FILE_HAS_DUPLICATE_EN
TRY_WITH_DIFFERENT_VALUES

PAM file has duplicate entry
with different values.

-1110 PI_ERROR_FILE_NO_SIGNATURE File has no signature
-1111 PI_ERROR_FILE_INVALID_SIGNATURE File has invalid signature
-1112 PI_ERROR_CANNOT_DETERMINE_ACTUAL

_END_OF_TRAVEL_WHILE_PLATFORM_IS_
MOVING

Cannot determine actual end
of travel range while platform
is moving.

-1113 PI_ERROR_AT_QIDN Sending IDN? or receiving the
response has failed.

-1114 PI_ERROR_AT_MAC_DEF Sending MAC_DEF or
receiving the response has
failed.

-1115 PI_CONTROLLER_OR_CONTROLLER_VERSI
ON_DOES_NOT_EXIST_IN_PISTAGES_DAT
ABASE

Sending Controller or
controller version does not
exist in PIStages database.

-1116 PI_NOT_ENOUGH_MEMORY Not enough memory
-1117 PI_ERROR_AXIS_RUNTIME_ERROR Runtime error indicated for

axis, check error log with
\"LOG?\" to find more details.

-1118 PI_ERROR_SYSTEM_RUNTIME_CRITICAL_E
RROR

Critical error indicated for
system, check error log with
\"LOG?\" to find more details.

8 GCS Commands

C-863.12 Mercury Controller MS249E Version: 2.1.0 225

-1119 PI_ERROR_CANNOT_START_EMULATOR Cannot start emulation
software.

-1120 COM_DEVICE_NOT_SUPPORTED Device is not supported
-10000 PI_PARAMETER_DB_INVALID_STAGE_TYPE

_FORMAT
PI stage database: String
containing stage type and
description has invalid
format.

-10001 PI_PARAMETER_DB_SYSTEM_NOT_AVAIL
ABLE

PI stage database: Database
does not contain the selected
stage type for the connected
controller.

-10002 PI_PARAMETER_DB_FAILED_TO_ESTABLIS
H_CONNECTION

PI stage database:
Establishing the connection
has failed.

-10003 PI_PARAMETER_DB_COMMUNICATION_E
RROR

PI stage database:
Communication was
interrupted (e.g. because
database was deleted).

-10004 PI_PARAMETER_DB_ERROR_WHILE_QUER
YING_PARAMETERS

PI stage database: Querying
data failed.

-10005 PI_PARAMETER_DB_SYSTEM_ALREADY_EX
ISTS

PI stage database: System
already exists. Rename stage
and try again.

-10006 PI_PARAMETER_DB_QHPA_CONTANS_UN
KNOWN_PAM_IDS

PI stage database: Response
to HPA? contains unknown
parameter IDs.

-10007 PI_PARAMETER_DB_AND_QHPA_ARE_INC
ONSISTENT

PI stage database:
Inconsistency between
database and response to
HPA?.

-10008 PI_PARAMETER_DB_SYSTEM_COULD_NOT
_BE_ADDED

PI stage database: Stage has
not been added.

-10009 PI_PARAMETER_DB_SYSTEM_COULD_NOT
_BE_REMOVED

PI stage database: Stage has
not been removed.

-10010 PI_PARAMETER_DB_CONTROLLER_DB_PA
RAMETERS_MISMATCH

Controller does not support
all stage parameters stored in
PI stage database. No
parameters were set.

-10011 PI_PARAMETER_DB_DATABASE_IS_OUTD
ATED

The version of PISTAGES3.DB
stage database is out of date.
Please update via
PIUpdateFinder. No
parameters were set.

8 GCS Commands

226 Version: 2.1.0 MS249E C-863.12 Mercury Controller

-10012 PI_PARAMETER_DB_AND_HPA_MISMATC
H_STRICT

Mismatch between number
of parameters present in
stage database and available
in controller interface. No
parameters were set.

-10013 PI_PARAMETER_DB_AND_HPA_MISMATC
H_LOOSE

Mismatch between number
of parameters present in
stage database and available
in controller interface. Some
parameters were ignored.

-10014 PI_PARAMETER_DB_FAILED_TO_SET_PAR
AMETERS_CORRECTLY

One or more parameters
could not be set correctly on
the controller.

-10015 PI_PARAMETER_DB_MISSING_PARAMETE
R_DEFINITIONS_IN_DATABASE

One or more parameter
definitions are not present in
stage database. Please update
PISTAGES3.DB via
PIUpdateFinder. Missing
parameters were ignored.

-10016 PI_PARAMETER_DB_MISSING_FIRMWARE
_FEATURE_ON_CONTROLLER

Parameters could not be set
on controller because the
corresponding firmware
feature is missing

9 Adapting Settings

C-863.12 Mercury Controller MS249E Version: 2.1.0 227

9.1 Settings of the C-863.12

The properties of the C-863.12 and the connected positioner are stored in the C-863.12 as
parameter values (e.g., settings for the servo algorithm (p. 26)).

The parameters can be divided into the following categories:

 Protected parameters whose default settings cannot be changed

 Parameters that can be set by the user to adapt to the application

The write permission for the parameters is determined by command levels.

Every parameter is in the volatile as well as in the nonvolatile memory of the C-863.12. The
values in the nonvolatile memory are loaded to the volatile memory as default values when
switching on or rebooting the C-863.12. The values in the volatile memory determine the
current behavior of the system.

The designation "Active Values" is used for the parameter values in the volatile memory and
"Startup Values" is used for the parameter values in the nonvolatile memory in the PC software
from PI.

9.2 Changing Parameter Values in the C-863.12

 NOTICE

Unsuitable parameter settings!
The values in the nonvolatile memory are loaded to the volatile memory as default values
when switching on or rebooting the C-863.12 and take effect immediately. Unsuitable
parameter settings can cause damage to the connected mechanics.
 Change parameter values only after careful consideration.
 Save the current parameter values to the PC (p. 229) before you make changes in the

nonvolatile memory.

 INFORMATION
 The number of write cycles in the nonvolatile memory is restricted by the limited lifetime of

the memory chip (EEPROM).
 Overwrite the default values only when it is necessary.
 Save the current parameter values to the PC (p. 229) before you make changes in the

nonvolatile memory.
 Contact our customer service department (p. 253), if the C-863.12 exhibits unexpected

9 Adapting Settings

9 Adapting Settings

228 Version: 2.1.0 MS249E C-863.12 Mercury Controller

behavior.

 INFORMATION
 When you use the PC software from PI, information is loaded as parameter values from a

positioner database (p. 12) into the volatile memory of the C-863.12.
Parameters loaded from a positioner database are marked in color in the parameter overview
(p. 236).

9.2.1 General Commands for Parameters
The following general commands are available for parameters:

Comma
nd Function

CCL Change to a higher command level, e.g., to obtain write permission for particular
parameters.

CCL? Get active command level.

HPA? Responds with a help string that contains all available parameters with short
descriptions.

RPA Copy a parameter value from the nonvolatile to the volatile memory.

SEP Change parameters in the nonvolatile memory.

SEP? Get parameter values from the nonvolatile memory.

SPA Change parameters in the volatile memory.

SPA? Get parameter values from the volatile memory.

WPA Copy a current parameter value from the volatile to the nonvolatile memory. Here it
is used as a default value.

You can find details in the command descriptions (p. 127).

9.2.2 Commands for Fast Access to Individual Parameters
The following special commands only change the corresponding parameters in the volatile
memory. When necessary, the changed values must be written to the nonvolatile memory with
the WPA command (p. 201).

 INFORMATION
 The parameters listed below can also be changed with the general commands.

9 Adapting Settings

C-863.12 Mercury Controller MS249E Version: 2.1.0 229

Comma
nd Adaptable parameters

ACC Acceleration in closed-loop operation (0xB)
DEC Deceleration in closed-loop operation (0xC)
VEL Velocity in closed-loop operation (0x49)

You can find details in the command descriptions (p. 127).

9.2.3 Saving Parameter Values in a Text File

 INFORMATION
 The C-863.12 is configured via parameters, e.g., to adapt the mechanics connected. Changing

parameter values can cause undesirable results.
 Create a backup copy on the PC before changing the parameter settings of the C-863.12.

You can then restore the original settings at any time.
 Create an additional backup copy with a new file name each time after optimizing the

parameter values or adapting the C-863.12 to specific mechanics.

 INFORMATION
 Parameter values saved in a text file on the PC can be loaded back to the C-863.12 in

PIMikroMove or PITerminal. The Send file... button is available for this purpose in the send
command window. Before loading into the C-863.12, the individual lines of the text files must
be converted into command lines that contain the corresponding SPA or SEP commands.

Requirements
 You have established communication with PIMikroMove or PITerminal between the C-

863.12 and the PC (p. 56).

Saving parameter values in a text file
1. If you use PIMikroMove, open the window for sending commands:

− Select the Tools > Command entry menu item in the main window or press the F4
key on the keyboard.

In PITerminal the main window from which commands can be sent is opened
automatically after establishing communication.

2. Get the parameter values from which you want to create a backup copy.

− If you want to save the parameter values from the volatile memory of the C-863.12:
Send the SPA? command.

− If you want to save the parameter values from the nonvolatile memory of the C-
863.12: Send the SEP? command.

9 Adapting Settings

230 Version: 2.1.0 MS249E C-863.12 Mercury Controller

3. Click on the Save... button.

The Save content of terminal as textfile window opens.

4. Save the queried parameter values in a text file to your PC in the Save content of
terminal as textfile window.

9.2.4 Changing Parameter Values: General Procedure
For working with parameters, you can use the general commands (p. 228) and the commands
for quick access (p. 228).

For simpler access to parameters, PIMikroMove is used in the following, so you do not have to
deal with the corresponding commands.

 NOTICE

Unsuitable parameter settings!
The values in the nonvolatile memory are loaded to the volatile memory as default values
when switching on or rebooting the C-863.12 and take effect immediately. Unsuitable
parameter settings can cause damage to the connected mechanics.
 Change parameter values only after careful consideration.
 Save the current parameter values to the PC (p. 229) before you make changes in the

nonvolatile memory.

 INFORMATION
 The following procedure is generally recommended for changing parameter values:

1. Change the parameter values in the volatile memory.

2. Check whether the C-863.12 works correctly with the changed parameter values.

If so:
 Write the changed parameter values into the nonvolatile memory.
If not:
 Change and check the parameter values in the volatile memory again.

 INFORMATION
 The write access for the parameters of the C-863.12 is defined by command levels. After the

controller is switched on or rebooted, the active command level is always 0. On command
levels > 1, write access is only available to PI service personnel.
 Contact the customer service department if there seem to be problems with parameters of

command level 2 or higher (p. 253).

9 Adapting Settings

C-863.12 Mercury Controller MS249E Version: 2.1.0 231

Requirements
 If you want to change parameter values in the nonvolatile memory of the C-863.12: You

have saved the parameter values of the C-863.12 in a text file on the PC (p. 229).

 You have established communication between the C-863.12 and the PC with
PIMikroMove (p. 56).

Changing parameter values: General procedure
1. Display the parameter list in PIMikroMove.

If you want to change the axis-related parameters of the C-863.12:

a) Open the expanded single axis window for the connected positioner in the main
window of PIMikroMove by clicking the right mouse button on the corresponding
line of the Axes tab and selecting Show Expanded Single Axis Window in the
context menu.

b) If the parameter to be modified is not included in the list on the right-hand side of

the window, click Configure View > Select parameters... and add it to the list. You
can also display certain groups of parameters or all axis-related parameters.

If you want to change the system-related parameters of the C-863.12:

− Open the window for the system-related parameters of the C-863.12 in the main
window of PIMikroMove by selecting C-863.12 > Show system parameters in the
menu.

2. Change the desired parameter values in the volatile or nonvolatile memory of the C-

863.12 in the corresponding parameter list.

If you want to change parameter values in the volatile memory, you have the following
options:

9 Adapting Settings

232 Version: 2.1.0 MS249E C-863.12 Mercury Controller

− Type the new parameter value into the corresponding input field in the Active
Value column of the list. Press the Enter key on the PC keyboard or click with the
mouse outside the input field to transfer the parameter value to the volatile
memory of the C-863.12.

− Click Load and Save Parameters -> Load all startup parameters of the axis /
system from controller in order to load the values of all axis-related / system-
related parameters from the nonvolatile memory of the C-863.12.

− Click Load and Save Parameters > Load parameters from stage database… in the
extended single-axis window to load a selected parameter set for the axis from the
positioner database. You can use Load and Save Parameters > Reload parameters
from stage database… to reload the currently loaded parameter set.

If you want to change parameter values in the nonvolatile memory, you have the
following options:

− Type the new parameter value into the appropriate input field in the Startup Value
column in the list. Press the Enter key on the PC keyboard or click with the mouse
outside the input field to transfer the parameter value to the nonvolatile memory
of the C-863.12.

− Click Load and Save Parameters -> Save all currently active axis / system
parameters as startup parameters to controller to write the values of all axis-
related / system-related parameters from the volatile to the nonvolatile memory of
the C-863.12. You can skip parameters that do not have write access on the current
command level.

If a parameter value in the volatile memory (Active Value column) is different from the
parameter value in the nonvolatile memory (Startup Value column), the line in the list
is highlighted in color.

9.3 Creating or Changing a Positioner Type

You can select a parameter set appropriate for your positioner from a positioner database in
the PC software from PI. The software transfers the values of the selected parameter set to the
volatile or nonvolatile memory of the controller. For further information, see "Positioner
Databases" (p. 12).

You can create and edit new parameter records in the PIStages3 database. This can be required
in the following cases, for example:

 You want to operate a positioner with different servo control parameter settings than
the one from the default parameter set.

 You want to adapt the soft limits of the positioner to your application.

 You have a custom positioner.

9 Adapting Settings

C-863.12 Mercury Controller MS249E Version: 2.1.0 233

 INFORMATION
 Possibilities for creating and editing parameter sets in the PISTAGES3.DB database:

 You can create a new positioner type easily by modifying an existing positioner type in
PIMikroMove and saving it under a new name.

 You can open and edit the positioner database directly with the PIStages3Editor, which is
included in the PI Software Suite.

PIMikroMove is used in the following for creating a new positioner type and for changing an
existing positioner type.

Requirements
 You have installed the latest version of the PISTAGES3.DB database onto your PC (p.

41).

 If PI provided a custom positioner database for your positioner, the dataset was
imported into PIStages3 (p. 43).

 You have established communication with PIMikroMove between the C-863.12 and the
PC (p. 56).

Creating a positioner type in the positioner database
1. Select the C-863 > Select connected stages... menu item in the main window of

PIMikroMove.

The Start up stages/axes for C-863 window opens and the Select connected stages step
is active.

2. Select an appropriate type of positioner during the Select connected stages step:

a) Mark the positioner type in the Stage database entries list.

9 Adapting Settings

234 Version: 2.1.0 MS249E C-863.12 Mercury Controller

b) Click Assign.

Figure 24: Start up controller – Select connected stages

c) Confirm the selection with OK.

3. Click Keep the changes temporarily in the Save all changes permanently dialog to load
the parameter settings into the volatile memory of the C-863.12.

The Start up stages/axes window changes to the Start up axes step.

4. Click Close in the Start up axes step to close the Start up stages/axes window.

5. Open the expanded single axis window for the selected positioner in the main window
of PIMikroMove by clicking the right mouse button on the corresponding line of the
Axes tab and selecting Show Expanded Single Axis Window in the context menu.

6. Enter new values for the parameters to be changed:

a) If the parameter to be modified is not included in the list on the right-hand side of
the window, click Configure view > Select parameters... and add it to the list. You
can also display certain groups of parameters or all axes-related parameters.

b) Type the new parameter value into the corresponding input field in the Active
Value column of the list.

9 Adapting Settings

C-863.12 Mercury Controller MS249E Version: 2.1.0 235

c) Press the Enter key on the PC keyboard or click outside the input field with the
mouse to transfer the parameter value to the volatile memory of the controller.
Note: If a parameter value in the volatile memory (Active Value column) is different
to the parameter value in the nonvolatile memory (Startup Value column), the line
in the list is highlighted in color.

7. Click Load and Save Parameters -> Save parameters to stage database....

The Save Parameters as User Stage Type dialog opens.

8. Save the changed parameter values as new positioner type in the Save Parameters as
User Stage Type dialog:

a) Leave the entry in the Parameters of axis field unchanged.

b) Enter the name for the new positioner type into the Save as field.

c) Click OK.

The new positioner type was saved to the PISTAGES3.DB positioner database. The
display of the connected positioner type was updated in the single axis window and in
the main window of PIMikroMove. The new positioner type is also available
immediately for selection in the Select connected stages step too.

Changing a positioner type in the positioner database
1. Select the C-863.12 > Select connected stages... menu item in the main window of

PIMikroMove.

The Start up stages/axes for C-863.12 window opens, the Select connected stages step
is active.

2. Select one of the positioners you created as described above (p. 233): Proceed with the
selection as described in step 2 of the Creating a positioner type in the positioner
database instruction.

3. Proceed with steps 3 to 7 in Creating a positioner type in the positioner database.

4. Save the modified parameter values of the positioner type in the Save Parameters as
User Stage Type dialog:

a) Leave the entry in the Parameters of axis field unchanged.

b) Leave the entry in the Save as field unchanged.

c) Click OK.

d) Click Change settings in the Stage type already defined dialog. The Save
Parameters as User Stage Type dialog closes automatically after a short time.

9 Adapting Settings

236 Version: 2.1.0 MS249E C-863.12 Mercury Controller

The parameter values of the positioner type have been updated in the PISTAGES3.DB
positioner database and in the main window of PIMikroMove.

9.4 Parameter Overview

 INFORMATION
 The write access for the parameters of the C-863.12 is defined by command levels. After the

controller is switched on or rebooted, the active command level is always 0. On command
levels > 1, write access is only available to PI service personnel.
 Contact the customer service department if there seem to be problems with parameters of

command level 2 or higher (p. 253).

 INFORMATION
 The password for saving the parameter values in the nonvolatile memory is 100.

Meaning of the color highlight in the parameter table:

Colorless The parameter value can be loaded from a positioner database (p. 12).

Light gray:

The value of the parameter is from one of the following sources:
 Factory setting
 Set by the controller during runtime and read only
 Read from the ID chip of the positioner (for future use)

Designations in the header of the following table:

 ID = Parameter ID, hexadecimal format

 Type = Data type:

− INT = integer value, including Boolean values

− FLOAT = floating-point number

− CHAR = String format

 CL = Command Level for write access

 Item = Item type that the parameter refers to, refer to "Commandable items" (p. 17) for
further information

 Parameter name = Name of the parameter

 Description = Explanation of the parameter

9 Adapting Settings

C-863.12 Mercury Controller MS249E Version: 2.1.0 237

ID Type CL Item Parameter name Description

0x8 FLOAT 0 Axis Maximum Position
Error (Phys. Unit)

Maximum position error
Is used for detecting motion errors.
For details, see "Motion errors" (p.
75).

0x9 INT 0 Axis Maximum Motor
Output

Maximum permissible absolute
measure of the control value
(dimensionless)
For details, see "Motor control" (p.
16).

0xA FLOAT 0 Axis Maximum Closed-Loop
Velocity (Phys. Unit/s)

Maximum velocity in closed-loop
operation
Specifies the maximum value for
parameter 0x49.

0xB FLOAT 0 Axis Closed-Loop
Acceleration (Phys.
Unit/s2)

Acceleration in closed-loop operation
Limited by parameter 0x4A.
Refer to "Generation of the dynamics
profile" (p. 22) for details.

0xC FLOAT 0 Axis Closed-Loop
Deceleration (Phys.
Unit/s2)

Deceleration in closed-loop operation
Limited by parameter 0x4B.
Refer to "Generation of the dynamics
profile" (p. 22) for details.

0xE INT 0 Axis Numerator Of The
Counts-Per-Physical-
Unit Factor

Numerator of the factor for counts
per physical unit of length
For details, see "Physical units" (p.
20).

0xF INT 0 Axis Denominator Of The
Counts-Per-Physical-
Unit Factor

Denominator of the factor for counts
per physical unit of length
For details, see "Physical units" (p.
20).

0x13 INT 0 Axis Is Rotary Stage? Is this a rotation stage?
0 = Not a rotation stage
1 = Rotation stage
No evaluation by the C-863.12 but
only by the PC software:
PIMikroMove determines which
motion is permissible on the basis of
this value.

0x14 INT 0 Axis Has Reference? Does the positioner have a reference
switch?
For details, see "Reference switch
detection" (p. 29).

9 Adapting Settings

238 Version: 2.1.0 MS249E C-863.12 Mercury Controller

ID Type CL Item Parameter name Description

0x15 FLOAT 0 Axis Maximum Travel In
Positive Direction
(Phys. Unit)

Soft limit in positive direction
See examples in "Travel range and
soft limits" (p. 32).

0x16 FLOAT 0 Axis Value At Reference
Position (Phys. Unit)

Position value at the reference switch
See examples in "Travel range and
soft limits" (p. 32).

0x17 FLOAT 0 Axis Distance From Negative
Limit To Reference
Position (Phys. Unit)

Distance between the reference
switch and the negative limit switch
See examples in "Travel range and
soft limits" (p. 32).

0x18 INT 0 Axis Limit Mode Signal logic of the limit switches
Refer to "Detecting limit switches" (p.
30) for details.

0x1A INT 0 Axis Has Brake? Does the positioner have a brake?
0 = No brake present
1 = Brake present. In this case,
switching the servo mode on/off and
activating/deactivating the brake are
coupled to each other, see BRA (p.
133) and SVO (p. 191).
The brake is controlled via the Motor
(p. 259) socket:
 Pin 15, when the brake driver is

integrated in the positioner
 Pins 9 and 16, when the C-

863.12's integrated brake driver is
used. Configuration is performed
with parameters 0x3094, 0x3095,
0x3096.

0x2F FLOAT 0 Axis Distance From
Reference Position To
Positive Limit (Phys.
Unit)

Distance between reference switch
and positive limit switch
See examples in "Travel range and
soft limits" (p. 32).

0x30 FLOAT 0 Axis Maximum Travel In
Negative Direction
(Phys. Unit)

Soft limit in negative direction
See examples in "Travel range and
soft limits" (p. 32).

0x31 INT 0 Axis Invert Reference? Should the reference signal be
inverted?
For details, see "Reference switch
detection" (p. 29).

0x32 INT 0 Axis Has No Limit Switches? Does the positioner have limit
switches?
Refer to "Detecting limit switches" (p.

9 Adapting Settings

C-863.12 Mercury Controller MS249E Version: 2.1.0 239

ID Type CL Item Parameter name Description

30) for details.
0x33 INT 0 Axis Motor Offset Positive Offset for the positive direction of

motion
Refer to "Control algorithm and other
control value corrections" (p. 26) for
details.

0x34 INT 0 Axis Motor Offset Negative Offset for the negative direction of
motion
Refer to "Control algorithm and other
control value corrections" (p. 26) for
details.

0x36 INT 0 Axis Settling Window
(encoder counts)

Settling window around the target
position
Refer to "On-target state" (p. 29) for
details.

0x3C CHAR 0 Axis Stage Name Positioner name
Maximum of 20 characters; default
value: DEFAULT_STAGE

0x3F FLOAT 0 Axis Settling Time (s) Delay time for setting the on-target
state.
Refer to "On-target state" (p. 29) for
details.

0x47 INT 0 Axis Reference Travel
Direction

Default direction for the referencing
move
Refer to "Referencing" (p. 34) for
details.

0x48 INT 0 Axis Motor Drive Offset Velocity-dependent offset
Refer to "Control algorithm and other
control value corrections" (p. 26) for
details.

0x49 FLOAT 0 Axis Closed-Loop Velocity
(Phys. Unit/s)

Velocity in closed-loop operation
Limited by parameter 0xA
Refer to "Generation of the dynamics
profile" (p. 22) for details.

0x4A FLOAT 0 Axis Maximum Closed-Loop
Acceleration (Phys.
Unit/s2)

Maximum acceleration in closed-loop
operation
Specifies the maximum value for
parameter 0xB.

0x4B FLOAT 0 Axis Maximum Closed-Loop
Deceleration (Phys.
Unit/s2)

Maximum deceleration in closed-loop
operation
Specifies the maximum value for
parameter 0xC.

9 Adapting Settings

240 Version: 2.1.0 MS249E C-863.12 Mercury Controller

ID Type CL Item Parameter name Description

0x50 FLOAT 0 Axis Velocity For Reference
Moves (Phys. Unit/s)

Velocity for referencing move
Refer to "Referencing" (p. 34) for
details.

0x5A INT 0 Axis Numerator Of The
Servo-Loop Input
Factor

Numerator of the control loop input
factor
Refer to "Control algorithm and other
control value corrections" (p. 26) for
details.

0x5B INT 0 Axis Denominator Of The
Servo-Loop Input
Factor

Denominator of the control-loop
input factor
Refer to "Control algorithm and other
control value corrections" (p. 26) for
details.

0x5C INT 0 Axis Source Of Reference
Signal

Reference signal source for the FRF
or FED commands
Refer to "Commands and parameters
for digital inputs" (p. 86) and "Using
digital input signals as switch signals"
(p. 89) for details.

0x5D INT 0 Axis Source Of Negative
Limit Signal

Reference signal source for the FNL
or FED commands
Refer to "Commands and parameters
for digital inputs" (p. 86) and "Using
digital input signals as switch signals"
(p. 89) for details.

0x5E INT 0 Axis Source Of Positive Limit
Signal

Reference signal source for the FPL
or FED commands
Refer to "Commands and parameters
for digital inputs" (p. 86) and "Using
digital input signals as switch signals"
(p. 89) for details.

0x5F INT 0 Axis Invert Digital Input
Used For Negative Limit

Inverts the polarity of the digital
inputs that are used as the sources of
the negative limit switch signal.
Refer to "Commands and parameters
for digital inputs" (p. 86) and "Using
digital input signals as switch signals"
(p. 89) for details.

0x60 INT 0 Axis Invert Digital Input
Used For Positive Limit

Inverts the polarity of the digital
inputs that are used as the sources of
the positive limit switch signal.
Refer to "Commands and parameters
for digital inputs" (p. 86) and "Using
digital input signals as switch signals"

9 Adapting Settings

C-863.12 Mercury Controller MS249E Version: 2.1.0 241

ID Type CL Item Parameter name Description

(p. 89) for details.

0x61 INT 0 Axis Invert Direction Of
Motion For Joystick-
Controlled Axis?

Should the direction of motion for
joystick-controlled axes be inverted?
For details see "Commands and
parameters for joystick control" (p.
92).

0x63 FLOAT 0 Axis Distance Between Limit
And Hard Stop (Phys.
Unit)

Distance between the built-in limit
switch and the hard stop
Refer to "Referencing" (p. 34) for
details.

0x70 INT 0 Axis Reference Signal Type Reference signal type
For details, see "Reference switch
detection" (p. 29).

0x71 INT 0 Axis D-Term Delay (No. Of
Servo Cycles)

D term delay
Refer to "Control algorithm and other
control value corrections" (p. 26) for
details.

0x72 INT 0 System Ignore Macro Error? Ignore macro error?
For details, see "Commands and
parameters for macros" (p. 99).

0x77 INT 0 Axis Use Limit Switches Only
For Reference Moves?

Should the limit switches only be used
for referencing moves?
Refer to "Detecting limit switches" (p.
30) for details.

0x78 FLOAT 0 Axis Distance From Limit To
Start Of Ref. Search
(Phys. Unit)

Distance between the limit switch or
hard stop and the starting position for
the referencing move to the index
pulse
Refer to "Referencing" (p. 34) for
details.

0x79 FLOAT 0 Axis Distance For Reference
Search (Phys. Unit)

Maximum distance for the
referencing move to the index pulse
Refer to "Referencing" (p. 34) for
details.

0x7C FLOAT 0 Axis Maximum Motor
Output (V)

Maximum permissible operating
voltage of the motor.
For details, see "Motor control" (p.
16).

0x94 FLOAT 0 Axis Notch Filter Frequency
1 (Hz)

Frequency of the first notch filter
For details, see "Control algorithm
and other control value corrections"
(p. 26).

9 Adapting Settings

242 Version: 2.1.0 MS249E C-863.12 Mercury Controller

ID Type CL Item Parameter name Description

0x95 FLOAT 0 Axis Notch Filter Edge 1 Rise of the edge of the first notch
filter
Refer to "Control algorithm and other
control value corrections" (p. 26) for
details.

0x3094 INT 0 Axis Internal Brake Use the integrated brake driver of the
C-863.12?
0 = do not use brake driver
1 = use brake driver. The brake is
activated (closed) when the supply
voltage drops below the value of
parameter 0x3096. In addition,
switching the servo mode on/off and
activating/deactivating the brake are
coupled to each other, see BRA (p.
133) and SVO (p. 191).
The setting only takes effect when
parameter 0x1A has the value 1
("brake available").
The signals from the brake driver are
output at pins 9 and 16 of the Motor
(p. 259) socket.

0x3095 FLOAT 0 Axis Brake Activation
Voltage (V)

Supply voltage for releasing the brake
0 to 48 V
Is only used when parameters 0x1A
and 0x3094 each have the value 1.

0x3096 FLOAT 0 Axis Brake Continuous
Voltage (V)

Supply voltage for keeping the brake
released continuously
0 to 48 V
Should be smaller than the value of
parameter 0x3095. To keep heat
build-up as low as possible,
continuous supply of voltage to the
brake should be kept as low as
possible.
Is only used when parameters 0x1A
and 0x3094 each have the value 1.

0x411 INT 0 Axis P-Term 1 0 to 32767; for details see "Control
algorithm and other control value
corrections" (p. 26).

0x412 INT 0 Axis I-Term 1 0 to 32767; for details see "Control
algorithm and other control value
corrections" (p. 26).

0x413 INT 0 Axis D-Term 1 0 to 32767; for details see "Control

9 Adapting Settings

C-863.12 Mercury Controller MS249E Version: 2.1.0 243

ID Type CL Item Parameter name Description

algorithm and other control value
corrections" (p. 26).

0x414 INT 0 Axis I-Limit 1 0 to 32767; for details see "Control
algorithm and other control value
corrections" (p. 26).

0x415 INT 0 Axis Kvff 1 0 to 32767; for details see "Control
algorithm and other control value
corrections" (p. 26).

0x03003900 INT 0 Axis Quadrature Encoder
Filter

Filtering of the encoder signal for
reducing interference?
0 - off (default setting)
1 - for rapid motion
2 - for medium-speed motion
3 - for slow motion
Refer to "Control algorithm and other
control value corrections" (p. 26) for
details.

0x07000601 CHAR 0 Axis Axis Unit Unit symbol
For details, see "Physical units" (p.
20).

0x0D000000 CHAR 2 System Controller S/N Serial number of the C-863.12
Refer to "Type plate" (p. 9) for details.

0x0E000200 FLOAT 2 System Servo Update Time Servo cycle time in seconds

0x0F000100 CHAR 2 Axis Stage Type Positioner type
Format for standard positioners: x-xxx
Format for customized positioners: x-
xxxKxxx

0x0F000200 CHAR 2 Axis Stage Serial Number Serial number of the positioner
9-digit number

0x0F000300 CHAR 2 Axis Stage Assembly Date Manufacturing date of the positioner
Date format: DDMMYY

0x0F000400 INT 2 Axis Stage HW Version Version number of the positioner
hardware

10 Maintenance

C-863.12 Mercury Controller MS249E Version: 2.1.0 245

10.1 Cleaning the C-863.12

 NOTICE

Short circuits or flashovers!
The C-863.12 contains electrostatic-sensitive devices that can be damaged by short-circuiting
or flashovers when cleaning fluids penetrate the housing.

 Before cleaning, disconnect the C-863.12 from the power source by removing the mains
plug.

 Prevent cleaning fluid from penetrating the housing.

 When necessary, clean the surfaces of the C-863.12's housing using a cloth dampened
with a mild cleanser or disinfectant.

10.2 Updating Firmware

 NOTE

Malfunction due to faulty firmware update!
An incorrect or incomplete firmware update of the C-863.12can lead to a situation where the
C-863.12 can only be restored to operational readiness by the PI customer service.

 Only update the firmware of the C-863.12 with approval from the PI customer service. If
possible, have the PI customer service perform the firmware update.

 Before starting the firmware update, ensure that you have received suitable firmware from
the PI customer service and stored it in a location that is accessible by the update program.

 Do not switch the C-863.12 off during the firmware update.

 INFORMATION
 The STA LED flashes when the C-863.12 is in firmware update mode. The C-863.12 does not

leave the firmware update mode until it is restarted after a successful firmware update. If the
firmware update was unsuccessful or aborted, the C-863.12 remains in the firmware update
mode after a reboot.
If the STA LED still flashes, even though the C-863.12 has been restarted after the firmware
update:
 Repeat the firmware update.

10 Maintenance

10 Maintenance

246 Version: 2.1.0 MS249E C-863.12 Mercury Controller

 If the update of the firmware fails, contact our customer service department (p. 253).

 INFORMATION
 If new parameters are introduced with the firmware update or the C-863.12 memory

management is changed, an initialization of the C-863.12 is required after updating the
firmware.

Requirements
 You have connected the C-863.12 to the PC via the USB or RS-232 interface (p. 46).

 You have made sure that the C-863.12 is not a part of a daisy chain network.

 You have made sure that no cable is connected to the RS-232 Out socket.

 The PIFirmwareManager program is installed on the PC (p. 41).

 You have copied the new firmware file, which you have received from our customer
service department, to a directory on the PC.

 You have read and understood the documentation which you received from our
customer service department together with the new firmware. You have learned from
the documentation whether new parameters are introduced with the firmware update
or the memory management of the C-863.12 changes.

 You have saved the parameter values of the C-863.12 to a text file on the PC (p. 229)

 You have saved the C-863.12 controller macros to files on the PC (p. 109).

 You have established communication with PIMikroMove or PITerminal between the C-
863.12 and the PC (p. 56).

Updating the firmware of the C-863.12
 Start the PIFirmwareManager program on the PC and update the controller firmware.

Proceed as described in the user manual SM164E (p. 3).

Restarting the C-863.12
1. Switch off the C-863.12.

2. Switch the C-863.12 on again.

If the firmware update was successful, the C-863.12 exits the firmware update mode
and the STA LED lights up continuously.

Have new parameters been added by the firmware update, or has the memory management of
the C-863.12 been changed?

 If no: Firmware update is finished.

 If yes: An initialization of the C-863.12 is required, see below.

10 Maintenance

C-863.12 Mercury Controller MS249E Version: 2.1.0 247

Initializing the C-863.12 after a firmware update
The initialization of the C-863.12 resets all parameters to their factory settings and deletes all
controller macros. Consequently, parameter values and controller macros that are not saved
are lost during the initialization process.

1. Make sure that the current parameter values and controller macros of the C-863.12
have been saved on the PC.

2. On the PC, start PITerminal or PIMikroMove, connect to the C-863.12, and, if necessary,
open the window to send commands.

3. Initialize theC-863.12, by sending the following commands one by one:
ZZZ 100 parameter

ZZZ 100 macros

After successful initialization, the controller issues a corresponding message.

4. Adapt the parameter values of the C-863.12.

For instructions on the general procedure, see "Changing Parameter Values: General
Procedure" (p. 230).

− Reset the parameters that were already present prior to the firmware update to the
saved values from the text file.

− Set the parameters that were introduced with the firmware update to the
appropriate values.

5. If you have saved controller macros on the PC: Load the controller macros back to the
C-863.12, see "Making Backups and Loading Controller Macros" (p. 109).

11 Troubleshooting

C-863.12 Mercury Controller MS249E Version: 2.1.0 249

Fault: Positioner does not move

Possible causes Remedial measures

Cable not connected correctly  Check the cable connections.

Positioner or cable is
defective

 If available, replace the defective positioner with another
positioner and test the new combination.

Unsuitable positioner cable
used

If unsuitable cables are used, interference can occur in the
signal transmission between the positioner and the C-863.12.
 If the positioner, cable, and C-863.12 are marked as a

related system, replace the system components with other
components only after consulting PI.

Positioner not connected to
power adapter

Positioners with integrated PWM amplifier are supplied via a
separate power adapter.
 If the positioner has an integrated PWM amplifier, connect

it to a suitable power adapter.
 To achieve the optimum motor performance, use a power

adapter for the C-863.12 that supplies the same output
voltage as the power adapter for the PWM amplifier.

 Make sure that the power adapter is functioning properly.
Limit switch signal logic set
incorrectly

In order for the positioner to be able to move, the settings of
the C-863.12 must correspond to the limit switch logic level of
the positioner; see "Limit Switch Detection" (p. 30).
 Adjust the Limit Mode parameter (0x18) accordingly.

Limit switch signals not
compatible with the C-863.12

It is possible that positioners from third-party suppliers use
unsuitable limit switch signals.
 Contact the customer service department (p. 253) and the

manufacturer of the positioner.
Incorrect configuration  Check the parameter settings of the C-863.12 with the

commands SPA? (volatile memory) and SEP? (nonvolatile
memory); for details, see "Adapting Settings" (p. 227).

Incorrect command or
incorrect syntax

 Send the ERR? command and check the error code that is
returned.

Wrong axis commanded  Make sure that the correct axis identifier is used and that
the commanded axis belongs to the correct positioner.

Joystick control is active Motion commands are not allowed when a joystick is activated
for the axis.
 Deactivate the joystick with the JON command (p. 166).

11 Troubleshooting

11 Troubleshooting

250 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Fault: Positioner performs unintentional motion

Possible causes Remedial measures

Joystick is not connected, but
activated in the C-863.12

 Activate the joystick in the software only if the C-863.12 is
actually connected to a joystick (p. 93).

Joystick not calibrated  Calibrate the joystick (p. 95).

Startup macro is run  Check whether a macro is specified as the startup macro
and cancel the selection of the startup macro if necessary
(p. 101).

Positioner's brake deactivated
with the BRA command (p.
133) when servo mode is
switched off

 Secure the positioner against moving unintentionally
before you deactivate the brake by command!

Fault: Positioner is oscillating or positions inaccurately

Possible causes Troubleshooting

The load was changed.  Readjust the system according to the changed load (p. 68).

Interference of encoder signal When filtering of the encoder signal (p. 28) is disabled: If major
interference is impacting the signal, the encoder may count too
many cycles or no longer accurately identify the edges.
 Set the Quadrature Encoder Filter (0x03003900) parameter

to a value > 0 to enable the filter for the encoder signal.
 Conduct referencing (p. 34) anew.
When filtering of the encoder signal is enabled: If velocities are
too high, the encoder might not identify all edges.
 If necessary, set the Quadrature Encoder Filter

(0x03003900) parameter to a lower value.
 Conduct referencing (p. 34) anew.

Fault: Positioner is already oscillating during the referencing move

Possible causes Remedial measures

Very high load on the
positioner

In case of a very high load, proceed with PIMikroMove during
the referencing move as follows:
1. Do not start the referencing move in the Start up axes

step, but click on Close to close the Start up controller
window instead.

2. In the main window, open the single axis window for the
positioner connected by selecting the positioner in the

11 Troubleshooting

C-863.12 Mercury Controller MS249E Version: 2.1.0 251

Fault: Positioner is already oscillating during the referencing move

Possible causes Remedial measures

View > Single Axis Window menu.

3. Expand the view of the single axis window by clicking on
the > button at the right edge of the window.

4. With the Servo check box, make sure that the servo mode
is switched on.

5. Start the referencing move by clicking on one of the
Reference… buttons.

6. If the positioner is oscillating: Stop the referencing move
immediately in the Reference Axes dialog, close the dialog
and switch off the servo mode by removing the tick from
the respective check box in the single axis window.

7. Enter new values for the servo control parameters, see
"Optimizing the Servo Control Parameters" (p. 68).

8. Restart the referencing move.

9. If the positioner is still oscillating, repeat steps 6 to 8 until
the referencing move has completed successfully without
oscillation.

Fault: There is no communication between the controller and the PC

Possible causes Remedial measures

The wrong communication
cable is used or it is defective

 Use a null modem cable for the RS-232 connection.
 If necessary, check whether the cable works on a fault-free

system.
Baud rate not configured
correctly

 Check the settings of DIP switches 5 and 6 for the baud rate
(p. 55).

 In a daisy chain network make sure that the same baud
rate is set for every controller.

Controller address not
configured correctly

 Check the settings of DIP switches 1 to 4 for the controller
address (p. 54).

Another program is accessing
the interface.

 Close the other program.

11 Troubleshooting

252 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Fault: There is no communication between the controller and the PC

Possible causes Remedial measures

Problems with special
software

 Check whether the system works with other software, such
as a terminal program or a development environment.

You can test the communication by starting a terminal program
(e.g., PITerminal) and entering *IDN? or HLP?.
 Make sure that you end the commands with an LF (line

feed).
A command is only executed when LF has been received.

Fault: The customer software does not function with the PI drivers

Possible causes Remedial measures

Incorrect combination of
driver routines/VIs

 Check whether the system functions with a terminal
program (e.g., PITerminal).

If so:
 Read the information in the corresponding software

manual and compare your program code with the sample
code on the data storage device with the PI Software Suite.

If the problem that occurred with your system is not in the list above or cannot be solved as
described, contact our customer service department (p. 253).

12 Customer Service

C-863.12 Mercury Controller MS249E Version: 2.1.0 253

For inquiries and orders, contact your PI representative or send us an email
(mailto:service@pi.de).

 If you have questions concerning your system, provide the following information:

− Product and serial numbers of all products in the system

− Firmware version of the controller (if applicable)

− Version of the driver or the software (if applicable)

− PC operating system (if applicable)

If possible: Take photographs or make videos of your system that can be sent to our customer
service if requested.

12 Customer Service

mailto:service@pi.de

13 Technical Data

C-863.12 Mercury Controller MS249E Version: 2.1.0 255

Subject to change. You can find the latest product specifications on the product web page at
www.pi.ws (https://www.physikinstrumente.com/en/).

13.1 Specifications

13.1.1 Data Table

 C-863.12
Function DC motor control
Drive types DC motor, servo controlled

Motors with PWM control, e.g., ActiveDrive amplifiers or brushless motors
with integrated block commutation

Axes 1
Supported functions Point-to-point motion. Startup macro. Data recorder for recording

operating data such as motor voltage, velocity, position or position error.
ID chip detection. Internal safety circuitry: Watchdog timer.

Motion and control C-863.12
Controller type PID controller, parameter changing during operation
Servo cycle time 50 µs
Profile generator Trapezoidal velocity profile

Encoder input A/B quadrature single-ended or differential TTL signal acc. to RS-422; 60
MHz

Stall detection Automatic motor stop when a programmable position error is exceeded

Limit switches 2 × TTL (programmable polarity)

Reference switch 1 × TTL

Motor brake 1 × TTL, can be switched by software

Electrical properties C-863.12
Max. output voltage* 0 V to operating voltage, for direct control of DC motors
Max. output power 60 W
Average output power 48 W
Power consumption, full load 48 W

13 Technical Data

https://www.physikinstrumente.com/en/

13 Technical Data

256 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Electrical properties C-863.12
Power consumption without load 3 W
Current limitation 2.5 A

Interfaces and operation C-863.12
Communication interfaces USB; RS-232, D-sub 9 (m)
Motor connector HD D-sub 26 (f)
Controller network Up to 16 units** on a single interface
I/O lines 4 analog / digital inputs (0 to 5 V / TTL), 4 digital outputs (TTL)
Command set PI General Command Set (GCS)
User software PIMikroMove
Application programming interfaces C, C++, C#, MATLAB, NI LabVIEW, Python
Manual control Joystick, Y cable for 2-D motion, pushbutton box

Miscellaneous C-863.12
Operating voltage 12 to 48 V DC *** from external power adapter (24 V DC power adapter

included in the scope of delivery)
Max. current consumption 40 mA without load (when supplied with 48 V)

80 mA without load (when supplied with 24 V)
Operating temperature range 5 to 50 °C (temperature protection switches off at excessively high

temperatures)
Mass 0.48 kg
Dimensions 130 mm × 76 mm × 40 mm (incl. mounting rails)

* The output voltage depends on the power adapter connected.

** 16 units with USB; 6 units with RS-232.

*** Recommended operating voltage: 24 to 48 V DC

13 Technical Data

C-863.12 Mercury Controller MS249E Version: 2.1.0 257

13.1.2 Maximum Ratings
The C-863.12 is designed for the following operating data:

Input on: Maximum operating
voltage

Operating
frequency

Maximum current
consumption

Mini-DIN 4-pin. (f) 48 V 3 A

Output on: Maximum output
voltage

Maximum output
current

Maximum output
frequency

HD D-sub 26 (f) 48 V 2.5 A 20kHz (PWM)

13.1.3 Ambient Conditions and Classifications
The following ambient conditions and classifications for the C-863.12 must be observed:

Area of application For indoor use only
Maximum altitude 2000 m
Air pressure 1100 hPa to 0.1 hPa
Relative humidity Highest relative humidity 80 % for temperatures up to 31 °C

Decreasing linearly to 50 % relative air humidity at 40 °C
Storage temperature 0 °C to 70 °C
Transport temperature –25 °C to +85 °C
Overvoltage category II
Protection class I
Degree of pollution 2
Degree of protection
according to IEC 60529

IP20

13 Technical Data

258 Version: 2.1.0 MS249E C-863.12 Mercury Controller

13.2 Dimensions

Dimensions in mm. Note that the decimal points are separated by a comma in the drawings.

Figure 25: C-863.12, dimensions in mm

13 Technical Data

C-863.12 Mercury Controller MS249E Version: 2.1.0 259

13.3 Pin Assignment

13.3.1 Motor

HD D-sub 26 (f)

Pin Signal Direction Function

1 OUT0 Output Motor + (differential; power PWM); for positioners
without PWM amplifier

2 OUT0 Output Motor + (differential; power PWM); for positioners
without PWM amplifier

3 OUT1 Output Motor - (differential; power PWM); for positioners
without PWM amplifier

4 OUT1 Output Motor - (differential; power PWM); for positioners
without PWM amplifier

5 - - Reserved

6 - - Reserved

7 - - Reserved

8 - - Reserved

9 BRAKE_OUT Output Motor brake driver

10 REF Input Reference switch (5 V TTL input, single-ended)

11 NLIM Input Negative limit switch (5 V TTL input)

12 PLIM Input Positive limit switch (5 V TTL input)

13 PWM-SIGNE Output PWM sign (TTL); for positioners with PWM amplifier

14 PWM-MAGE Output PWM magnitude (TTL); for positioners with PWM
amplifier

15 BRAKEE Output Motor brake 5 V TTL, for positioners with integrated
brake driver

16 VB_HC Output Motor brake driver (0 to 48 V supply)

17 ID Chip Bidirectional ID chip (intended for future use)

18 VCC_ENC Output Position sensor power supply (5 V, 200 mA)

19 ENCA+ Input Encoder input A+ (RS-422)

20 ENCA- Input Encoder input A- (RS-422)

13 Technical Data

260 Version: 2.1.0 MS249E C-863.12 Mercury Controller

Pin Signal Direction Function

21 ENCB+ Input Encoder input B+ (RS-422)

22 ENCB- Input Encoder input B- (RS-422)

23 INDEX+ Input Reference switch, differential

24 INDEX- Input Reference switch, differential

25 GND GND

26 VCC_ENC Output Position sensor power supply (5 V, 200 mA)

Do not connect anything to reserved pins.

13.3.2 I/O

Mini-DIN socket, 9-pin, female

Figure 26: Front view of the mini-DIN socket

Pin Function

1 Input 1 (analog: 0 to +5V / digital: TTL)

2 Input 2 (analog: 0 to +5V/ digital: TTL)

3 Input 3 (analog: 0 to +5V/ digital: TTL)

4 Input 4 (analog: 0 to +5V/ digital: TTL)

5 Output 1 (digital: TTL)

6 Output 2 (digital: TTL)

7 Output 3 (digital: TTL)

8 Output 4 (digital: TTL)

9 Vcc (+5 V)

Shield GND

13 Technical Data

C-863.12 Mercury Controller MS249E Version: 2.1.0 261

13.3.3 C-170.IO Cable for Connecting to the I/O Socket

Mini-DIN connector, 9-pin, male, open end

Figure 27: C-170.IO cable

Pin Wire Color Function on the I/O socket of the C-
863.12

1 Black Input 1 (analog: 0 to +5V / digital: TTL)
2 white Input 2 (analog: 0 to +5V / digital: TTL)
3 Red Input 3 (analog: 0 to +5V / digital: TTL)
4 Yellow Input 4 (analog: 0 to +5V / digital: TTL)
5 Purple Output 1 (digital, TTL)
6 Blue Output 2 (digital, TTL)
7 Green Output 3 (digital, TTL)
8 Brown Output 4 (digital, TTL)
9 Gray Vcc (+5V)
Sheath Shield, coated black (thicker

than the wire connected to
pin 1)

GND

13 Technical Data

262 Version: 2.1.0 MS249E C-863.12 Mercury Controller

13.3.4 Joystick

Mini-DIN socket, 6-pin, female (PS/2)

Figure 28: Front view of Mini-DIN socket

Pin Function

1 GND

2 Not connected

3 Output: Vcc (3.3 V)

4 Input: axis 1 of joystick 1 (0 to 3.3 V)

5 Not connected

6 Input: Button 1 of joystick 1 (0 or 3.3 V)

13 Technical Data

C-863.12 Mercury Controller MS249E Version: 2.1.0 263

13.3.5 C-819.20Y Cable for C-819.20 Joystick
The C-819.20Y cable makes it possible to connect 2 controllers to the C-819.20 joystick.

Figure 29: Y cable C-819.20Y for joystick with 2 controllers

Mini-DIN connector, 6-pin, female on 2 Mini-DIN connectors, 6-pin, male

Mini-DIN 6-pin,
female (to
joystick)

Signal Mini-DIN, 6-pin,
male, X branch
(to controller 1)

Mini-DIN, 6-pin,
male, Y branch
(to controller 2)

Pin 1 GND Pin 1 Pin 1

Pin 2 Button for joystick Y axis Not connected Pin 6
Pin 3 Joystick power source Pin 3 Not connected
Pin 4 Joystick X axis Pin 4 Not connected
Pin 5 Joystick Y axis Not connected Pin 4
Pin 6 Button for joystick X axis Pin 6 Not connected

13 Technical Data

264 Version: 2.1.0 MS249E C-863.12 Mercury Controller

13.3.6 RS-232 In and RS-232 Out

RS-232 In: D-sub 9 panel plug

RS-232 Out: D-sub 9 socket

Pin Function

1 Not connected

2 RxD (PC to controller)

3 TxD (controller to PC)

4 Not connected

5 GND

6 Not connected
7 Not connected
8 Not connected
9 Not connected

 INFORMATION
 The pins of the RS-232 In and RS-232 Out sockets are connected to each other in the C-863.12

1:1.

 INFORMATION
 In a daisy chain network connected to the PC via the RS-232 interface of the first controller,

only the PC feeds the RxD line. Depending on how performant the RS-232 driver of the PC is,
the range of the network may be limited to 6 devices.

13 Technical Data

C-863.12 Mercury Controller MS249E Version: 2.1.0 265

 INFORMATION
 The C-863.12 copies every signal that it receives from the PC via USB to the RxD line of the RS-

232 In and RS-232 Out sockets. The C-863.12 copies the signal of the TxD line via USB to the
PC.

13.3.7 Power Adapter Connector

DC power socket (Kycon), 4-pole (f), lockable

Figure 30: DC power socket (Kycon), 4-pole (f)

Pin Signal Direction

1 GND GND

2 48 V DC supply voltage Input

3 GND GND

4 48 V DC supply voltage Input

Shield GND connected via the housing GND

14 Old Equipment Disposal

C-863.12 Mercury Controller MS249E Version: 2.1.0 267

In accordance with EU law, electrical and electronic equipment may not be disposed of in EU
member states via the municipal residual waste.

Dispose of your old device according to international, national, and local rules and regulations.

To fulfill the responsibility as the product manufacturer, Physik Instrumente (PI) SE & Co. KG
undertakes environmentally correct disposal of all old PI equipment made available on the
market after 13 August 2005 without charge.

If you have an old device from PI, you can send it to the following address free of charge:

Physik Instrumente (PI) SE & Co. KG

Auf der Römerstraße 1

76228 Karlsruhe, Germany

14 Old Equipment Disposal

15 European Declarations of Conformity

C-863.12 Mercury Controller MS249E Version: 2.1.0 269

For the C-863.12, declarations of conformity were issued according to the following European
statutory requirements:

EMC Directive

RoHS Directive

The standards applied for certifying conformity are listed below.

EMC: EN 61326-1

Safety: EN 61010-1

RoHS: EN IEC 63000

15 European Declarations of Conformity

	1 About this Document
	1.1 Objective and Target Group of this User Manual
	1.2 Symbols and Typographic Conventions
	1.3 Definition of Terms
	1.4 Figures
	1.5 Other Applicable Documents
	1.6 Downloading manuals

	2 Safety
	2.1 Intended Use
	2.2 General Safety Instructions
	2.3 Organizational Measures

	3 Product Description
	3.1 Product View
	3.1.1 Front Panel
	3.1.2 Rear Panel

	3.2 Type Plate
	3.3 Scope of Delivery
	3.4 Optional Accessories
	3.5 Overview of PC Software
	3.5.1 PI Software Suite

	3.6 Positioner Databases
	3.7 Communication Interfaces
	3.7.1 Control of PI Systems
	3.7.2 C-863.12 Communication Interfaces

	3.8 Functional Principles
	3.8.1 Block Diagram
	3.8.2 Motor Control
	3.8.3 Commandable Elements
	3.8.4 Important Components of the Firmware
	3.8.5 Operating Modes
	3.8.6 Physical Units
	3.8.7 Motion Triggering
	3.8.8 Generation of the Dynamics Profile
	3.8.9 Servo Algorithm and Other Control Value Corrections
	3.8.10 On-Target State
	3.8.11 Reference Switch Detection
	3.8.12 Limit Switch Detection
	3.8.13 Travel Range and Soft Limits
	3.8.14 Referencing

	4 Unpacking
	5 Installing
	5.1 Installing the PC Software
	5.1.1 Doing Initial Installation
	5.1.2 Installing Updates
	5.1.3 Installing Custom Positioner Databases

	5.2 Mounting the C-863.12
	5.3 Grounding the C-863.12
	5.4 Connecting the Positioner
	5.5 Connecting the PC
	5.5.1 Connecting to the RS-232 Interface
	5.5.2 Connecting to the USB Interface
	5.5.3 Building a Daisy Chain Network

	5.6 Connecting the Power Adapter to the C-863.12
	5.7 Connecting an Analog Joystick
	5.8 Connecting Digital Inputs and Outputs
	5.8.1 Connecting the Digital Outputs
	5.8.2 Connecting the Digital Inputs

	5.9 Connecting Analog Signal Sources

	6 Startup
	6.1 General Notes on Startup
	6.2 Adapting the DIP Switch Settings
	6.2.1 General Procedure
	6.2.2 Controller Address
	6.2.3 Baud Rate

	6.3 Switching the C-863.12 On
	6.4 Establishing Communication
	6.4.1 Establishing Communication via RS-232
	6.4.2 Establishing Communication via USB
	6.4.3 Establishing Communication for Networked Controllers

	6.5 Starting Motion
	6.6 Optimizing the Servo Control Parameters

	7 Operation
	7.1 Motion Errors
	7.1.1 Behavior with Motion Errors
	7.1.2 Re-establishing Readiness for Operation

	7.2 Data Recorder
	7.2.1 Configuring the Data Recorder
	7.2.2 Starting the Recording
	7.2.3 Reading Recorded Data

	7.3 Digital Output Signals
	7.3.1 Commands for Digital Outputs
	7.3.2 Configuring the "Position Distance" Trigger Mode
	7.3.3 Configuring the "On Target" Trigger Mode
	7.3.4 Configuring the "Motion Error" Trigger Mode
	7.3.5 Configuring the "In Motion" Trigger Mode
	7.3.6 Configuring the "Position + Offset" Trigger Mode
	7.3.7 Configuring the "Single Position" Trigger Mode
	7.3.8 Setting Signal Polarity

	7.4 Digital Input Signals
	7.4.1 Commands and Parameters for Digital Inputs
	7.4.2 Using Digital Input Signals in Macros
	7.4.3 Using Digital Input Signals as Switch Signals

	7.5 Analog Input Signals
	7.5.1 Commands for Analog Inputs
	7.5.2 Using Analog Input Signals in Macros

	7.6 Joystick Control
	7.6.1 How Joystick Control Works
	7.6.2 Commands and Parameters for Joystick Control
	7.6.3 Controlling Axis Motion
	7.6.4 Calibrating the Joystick
	7.6.5 Joysticks Available

	7.7 Controller Macros
	7.7.1 Overview: Macro Functionality and Example Macros
	7.7.2 Commands and Parameters for Macros
	7.7.3 Working with Macros
	7.7.4 Making Backups and Loading Controller Macros
	7.7.5 Macro Example: Synchronization of Two Controllers
	7.7.6 Macro Example: Stopping Motion by Pushbutton
	7.7.7 Macro Example: Joystick Control with Storage of Positions
	7.7.8 Macro Example: Joystick Control with Change in Velocity

	8 GCS Commands
	8.1 Notation
	8.2 GCS Syntax for Syntax Version 2.0
	8.3 Target and Sender Address
	8.4 Variables
	8.5 Command Overview
	8.6 Command Descriptions for GCS 2.0
	8.7 Error Codes

	9 Adapting Settings
	9.1 Settings of the C-863.12
	9.2 Changing Parameter Values in the C-863.12
	9.2.1 General Commands for Parameters
	9.2.2 Commands for Fast Access to Individual Parameters
	9.2.3 Saving Parameter Values in a Text File
	9.2.4 Changing Parameter Values: General Procedure

	9.3 Creating or Changing a Positioner Type
	9.4 Parameter Overview

	10 Maintenance
	10.1 Cleaning the C-863.12
	10.2 Updating Firmware

	11 Troubleshooting
	12 Customer Service
	13 Technical Data
	13.1 Specifications
	13.1.1 Data Table
	13.1.2 Maximum Ratings
	13.1.3 Ambient Conditions and Classifications

	13.2 Dimensions
	13.3 Pin Assignment
	13.3.1 Motor
	13.3.2 I/O
	13.3.3 C-170.IO Cable for Connecting to the I/O Socket
	13.3.4 Joystick
	13.3.5 C-819.20Y Cable for C-819.20 Joystick
	13.3.6 RS-232 In and RS-232 Out
	13.3.7 Power Adapter Connector

	14 Old Equipment Disposal
	15 European Declarations of Conformity

