PZ115E User Manual # E-621.SR LVPZT Controller/Amplifier Module Release: 2.3.0 Date: 2021-09-21 This document describes the following product: ■ E-621.SR LVPZT Controller/Amplifier, Single Channel, for Strain Gauge Sensors With servo controller submodule and computer interface and command interpreter submodule. Capacitive sensor E-621 versions are described in a separate manual, PZ160E. Physik Instrumente (PI) GmbH & Co. KG is the owner of the following company names and trademarks: PI®, NanoCube®, PICMA®, PILine®, NEXLINE®, PiezoWalk®, NEXACT®, Picoactuator®, PInano®, PIMag®, Q-Motion® Notes on brand names and third-party trademarks: Microsoft® and Windows® are registered trademarks or trademarks of Microsoft Corporation in the USA and/or other countries. LabVIEW, National Instruments and NI are trademarks of National Instruments. Neither the driver software nor the software programs offered by PI or other goods and services are connected to or sponsored by National Instruments. Copyright 1999–2021 by Physik Instrumente (PI) GmbH & Co. KG, Karlsruhe, Germany. The text, photographs and drawings in this manual enjoy copyright protection. With regard thereto, Physik Instrumente (PI) GmbH & Co. KG reserves all rights. Use of said text, photographs and drawings is permitted only in part and only upon citation of the source. First printing 2021-09-21 Document Number PZ115E Eco, BRo, Release 2.3.0 E-621UserPZ115E230.doc Subject to change without notice. This manual is superseded by any new release. The newest release is available for download at www.pi.ws. ## About This Document #### Users of This Manual This manual is designed to help the reader to install and operate the E-621.SR LVPZT Controller/Amplifier Module. It assumes that the reader has a fundamental understanding of basic servo systems, as well as motion control concepts and applicable safety procedures. The manual describes the physical specifications and dimensions of the E-621.SR LVPZT Controller/Amplifier Module as well as the hardware installation procedures which are required to put the associated motion system into operation. Updated releases are available for download from www.pi.ws or via email: contact your Physik Instrumente Sales Engineer or our customer service department (mailto:service@pi.de). #### Conventions The notes and symbols used in this manual have the following meanings: ## WARNING Calls attention to a procedure, practice or condition which, if not correctly performed or adhered to, could result in injury or death. ## DANGER Indicates the presence of high voltage (> 50 V). Calls attention to a procedure, practice or condition which, if not correctly performed or adhered to, could result in injury or death. ## CAUTION Calls attention to a procedure, practice, or condition which, if not correctly performed or adhered to, could result in damage to equipment. ### NOTE Provides additional information or application hints. #### **Related Documents** The hardware components and the software tools which might be delivered with E-621.SR LVPZT Controller/Amplifier Module are described in their own manuals. All documents are available as PDF files. Updated releases are available for download from www.pi.ws or via email: contact your Physik Instrumente Sales Engineer or our customer service department (mailto:service@pi.de). # Contents | 1. | Introduction | | | |----|---------------------|--|----| | | 1.1
1.2 | How to use the Documentation | 5 | | | 1.3
1.4 | Safety Precautions Unpacking | | | | 1.4 | Опраскину | | | 2. | Qu | ick Start | 10 | | | 2.1 | Line Power and Fuses | _ | | | 2.2 | Installation | | | | 2.3 | First Steps | 13 | | 3. | Operation | | | | | 3.1 | Front Panel Elements | 16 | | | 3.2 | Modes of Operation | 19 | | | | 3.2.1 Control Modes | | | | 3.3 | Networking on I ² C Bus | | | | 3.4 | User Electronics and Sensor Monitor Signal | | | 4. | Calibration 25 | | | | | 4.1 | Sensor Connection and Adjustment | 25 | | | | 4.1.1 Open-Loop Zero-Point Adjustment | | | | | 4.1.2 Open-Loop Sensor Range Adjustment | | | | 4.2 | Servo-Control Dynamic Characteristics | | | 5. | Electronics Details | | | | | 5.1 | E-621.SR Block Diagram | 33 | | | 5.2 | Components and Adjustment Elements | 34 | | | | 521 Jumpers | | | | | 5.2.2 Switches | | | | 5.3 | E801B1008 Sensor Processing Submodule | 36 | | | 5.4 | E-802 Servo Controller Submodule | 37 | | 6. | Tro | publeshootina | 38 | # Contents | 7. | Customer Service | | 42 | |-----|------------------------|-------------------------------------|----| | 8. | Old Equipment Disposal | | | | 9. | Technical Data | | 44 | | | 9.1 | Specifications | 44 | | | 9.2 | Frequency Response Diagram | 46 | | | 9.3 | Pin Assignments | 47 | | | | 9.3.1 32-Pin Main Connector | 47 | | | | 9.3.2 Strain Gauge Sensor Wiring | 48 | | 10. | Appendix | | 49 | | | 10.1 | Lifetime of PICMA® Actuators | 49 | | | 10.2 | European Declarations of Conformity | 51 | # 1. Introduction The E-621.SR amplifier/controller is designed as a EURO board plug-in module which can be mounted in a 9.5" desktop chassis (E-501.621) or a 19" rack chassis (E-500.621). The E-621.SR amplifier/controller is designed to drive and control the displacement of a low-voltage piezoelectric positioner or actuator (LVPZT). The E-621.SR provides DC sensor processing for usage with strain gauge sensors (SGS; via E801B1008 sensor submodule). The E-621.SR comes with an E-802 Servo Controller and an E-816 Computer Interface and Command Interpreter installed as standard. Networking of E-621 modules allows controlling up to 12 devices over a single RS-232 or USB computer interface. The modules to be networked must be installed in the same chassis. E-621.CRs for use with capacitive sensors are described in detail in their own manual, PZ160. Fig. 1: E-621s installed in compatible PI chassis (E-500.621 in this example) are automatically networked #### 1.1 How to use the Documentation You can download all manuals listed below as well as manuals for PC software from our website. For downloading, use the links "E-816" and "PI software" from the file "A000T0081-Downloading Manuals from PI.pdf", which can be found in the \Manuals folder on the PI software CD that is included in the scope of delivery. In general, the latest versions of our manuals are available for download on our website (www.pi.ws). E-621.SR User Manual (this document) This User Manual enables you to put your positioner with the E-621 into operation for the first time. Furthermore, it gives an overview of the E-621 functions and specifications. - Always keep this user manual available by the E-621. - Add all information given by the manufacturer to the User Manual, for example supplements or Technical Notes. - If you pass the E-621 on to other users, also turn over this User Manual as well as all other relevant information provided by the manufacturer. - Only use the device on the basis of the complete User Manual. Missing information due to an incomplete User Manual can lead to injury as well as property damage. - Only install and operate the E-621 after having read and understood this User Manual. E-816 User Manual (PZ116E) Remote control via computer interface ("computer-controlled mode", p. 20) makes use of the E-816 computer interface module which is integrated in the E-621. During remote control via computer interface, the E-621 is therefore identified as "E-816". For detailed instructions, descriptions and examples, refer to the E-816 User Manual. E-802 User Manual (PZ150E) and E801B1008 User Manual (PZ117E) In addition to the E-816 computer interface module, the following submodules are integrated in the E-621.SR: - E-802.55 servo controller submodule - E801B1008 sensor processing submodule The information given in the User Manuals of those submodules is only relevant if you should ever need to re-calibrate your system. For normal operation of the E-621, you do not need those manuals because your system will be fully calibrated before being shipped. Note that re-calibration should only be done by appropriately trained personnel and after consultation with PI. #### 1.2 Intended Use The E-621.SR LVPZT Controller/Amplifier Module is designed for installation in a suitable chassis, e.g. the E-500.621 or E-501.621 provided by PI. Based on its design and realization, the E-621.SR LVPZT Controller/Amplifier Module is intended to drive capacitive loads, in the present case, piezoceramic actuators. The E-621.SR must not be used for applications other than stated in this manual, especially not for driving ohmic (resistive) or inductive loads. E-621.SRs can be used for both static and dynamic applications. The E-621.SR can be operated in closed-loop mode using strain gauge sensors (SGS). Appropriate sensors are provided by PI and integrated in the mechanics according to the mechanics product specifications. Other sensors may be used as position sensors only with permission of PI. Observe the safety precautions given in this User Manual. E-621.SR meets the following minimum specifications for operation*: - Indoor use only - Altitude up to 2000 m - Ambient temperature from 5°C to 40°C - Relative humidity up to 80% for temperatures up to 31°C, decreasing linearly to 50% relative humidity at 40°C - Line voltage fluctuations of up to ±10% of the line voltage - Transient overvoltages as typical for public power supply Note: The nominal level of the transient overvoltage is the standing surge voltage according to the overvoltage category II (IEC 60364-4-443). - Degree of pollution: 2 - ^{*} Any more stringent specifications in the Technical Data table are, of course, also met. #### 1.3 Safety Precautions #### **DANGER** High Voltage: Read This Before Operation: E-621.SR LVPZT Controller/Amplifier Modules generate voltages up to 130 V for driving LVPZTs. The output power may cause serious injury. When working with these devices or
using PZT products from other manufacturers we strongly advise you to follow general accident prevention regulations. All work done with and on the equipment described here requires adequate knowledge and training in handling High Voltages. Any cabling or connectors used with the system must meet the local safety requirements for the voltages and currents carried. Procedures which require removing the E-621 module from the chassis should be carried out by authorized, qualified personnel only. Disconnect the chassis from power when removing modules, and when resetting internal switches or jumpers. When a module removed from the chassis must be operated, use a 32-pin extension connector (P-895.00, not included). Voltages of up to 130 V can be exposed. Do not touch internal conductors. Be sure to connect pin 14a and 14c to a Protective Ground! ## WARNING Connect the AC power cord of the E-500.621 or E-501.621 chassis in which the E-621 is installed to the wall socket (100 to 240 VAC). Only use the supplied power cord or a sufficiently dimensioned power cord to connect the chassis to the power source. To disconnect the system from the supply voltage completely, remove the power plug from the wall socket, or remove the power cord from the chassis. Install the system near the AC outlet and such that the AC power plug can be reached easily. #### CAUTION Place the chassis with the E-621(s) in a location with adequate ventilation to prevent internal heat build-up. Allow at least 10 cm (4 inches) clearance from the top and the rear of the unit and 5 cm (2 inches) from each side. Never cover the ventilation slots of the chassis as this will impede ventilation. #### CAUTION E-621 modules are ESD-sensitive (electrostatic discharge sensitive) devices. Observe all precautions against static charge buildup before handling these devices. Avoid touching circuit components, pins and PCB traces. Discharge any static electricity you may have on your body by briefly touching a conductive, grounded object before you touch any electronic assembly. Pose PCBs only on conductive surfaces, such as ESD-safe transport containers (envelopes, foam). Electronic subassemblies must always be kept and transported/shipped in conductive packaging. Make sure that no conductive particles of any kind (metallic dust or shavings, broken pencil leads, loose screws) contact the device circuitry. ## CAUTION The E-621 main connector pinout is not compatible with the PI EURO board modules of the E-500 series (e.g. E-509 servo controller or E-50x amplifier). ### **CAUTION** For successful operation of two or more E-621.CRs—which are described in a separate manual—, their E-500.621 or E-501.621 chassis must have been manufactured after August 2006. Contact PI if you are not sure about the manufacturing date of your chassis. ## **CAUTION** Calibration should only be done after consultation with PI, otherwise the internal configuration data may be destroyed by erroneous operation. ## **CAUTION** Thermally stable systems have the best performance. For a thermally stable system, switch on the E-621 at least one hour before you start working with it. ## **CAUTION** If the piezo positioner starts oscillating (humming noise): In closed-loop operation, switch off the servo immediately. The load and / or the dynamics of operation probably differ too much from the setup for which the system was calibrated. In open-loop operation, stop the motion immediately. Do not operate the piezo positioner at its resonant frequency even though the notch filter by default is also active in open-loop operation. Otherwise the piezo positioner could be irreparable damaged. ## 1.4 Unpacking According to your order, the E-621.SR LVPZT Controller/Amplifier Module comes separately or installed in an E-500.621 or E-501.621 chassis. Unpack the system with care. Compare the contents against the items covered by the contract and against the packing list. The following items should be included with an E-621 unit: - RS-232 null-modem cable for PC connection (C-815.34) - USB cable (USB-A (m)/USB Mini-B (m)) for PC connection (000036360) - SMB/BNC adapter cables (E-692.SMB) 1.5 m, two units - 32-pin multipoint socket connector (DIN 416123) for installing the E-621 module in custom electronics (588) - User Manual for E-621.SR (PZ115E), this document - PI software CD for E-816-interface devices (C-990.CD1) Inspect the contents for signs of damage. If parts are missing or you notice signs of damage contact PI immediately. Save all packing materials in the event the product needs to be shipped elsewhere. # 2. Quick Start #### 2.1 Line Power and Fuses This section is only relevant if the E-621 comes installed in an E-500.621 or E-501.621 chassis provided by PI. The power connection and the line fuses are located on the rear panel of the E-500.621 or E-501.621 chassis. The chassis is equipped with a wide-range power supply and with fuses that are admissible for both 115 V and 230 V operation. No settings need be changed when connecting the system to a different supply voltage. The orientation of the fuse carrier is irrelevant. # WARNING Connect the AC power cord of the E-500.621 or E-501.621 chassis in which the E-621 is installed to the wall socket (100 to 240 VAC). Only use the supplied power cord or a sufficiently dimensioned power cord to connect the chassis to the power source. To disconnect the system from the supply voltage completely, remove the power plug from the wall socket, or remove the power cord from the chassis. Install the system near the AC outlet and such that the AC power plug can be reached easily. ## WARNING Before you open the door of the fuse carrier, remove the power plug from the wall socket to disconnect the system from the power supply completely. ## CAUTION Both fuses are active and have to be replaced if there is a fault. To access the line power fuses, proceed as follows: - 1 Switch the system off and remove the power cord. - 2 Wait one minute to be sure that all electric circuits are discharged completely. - 3 Pry open the door that covers the fuse carrier (see Fig. 2) and pry out the fuse carrier. - 4 Be sure to replace **both** fuses with: IEC 4 AT (slow blow) Note that IEC-standard fuses are designed to carry the nominal current indefinitely. Other fuse rating standards differ. - 5 Reinstall the carrier and close the door. Fig. 2: Fuse location on the rear panel and in the carrier (1 of 2 fuses visible) #### 2.2 Installation This section is only relevant if the E-621 modules come without chassis. #### CAUTION E-621 modules are ESD-sensitive (electrostatic discharge sensitive) devices. Observe all precautions against static charge buildup before handling these devices. Avoid touching circuit components, pins and PCB traces. Discharge any static electricity you may have on your body by briefly touching a conductive, grounded object before you touch any electronic assembly. Pose PCBs only on conductive surfaces, such as ESD-safe transport containers (envelopes, foam). Electronic subassemblies must always be kept and transported/shipped in conductive packaging. Make sure that no conductive particles of any kind (metallic dust or shavings, broken pencil leads, loose screws) contact the device circuitry. Before operation is possible, the E-621 must be installed in a suitable chassis. Required input and output lines must be connected via the 32-pin main connector. To do this, you can use the included multipoint socket connector (588). For pinout see "32-Pin Main Connector" on p. 47. #### CAUTION E-621 is only compatible with E-50x.621 chassis but incompatible with other chassis of PI's E-500-series. #### NOTE All front-panel connections except of the USB lines are duplicated on the 32-pin main connector. For a custom or OEM installation, consider the following: - Networked units must have the I²C networking lines connected to each E-621 in parallel (pins 32a and 32c). The network bus lines are limited to a maximum length of 1 m and a maximum capacitance of 400 pF. See "Networking on I²C Bus" on p. 23 for details - Each unit requires sufficient power. A DC-DC converter is installed on the main board of the E-621 module with an input voltage range of 12 to 30 VDC (recommended supply 15 V). This converter generates -25 and +125 V for the power amplifier and +/-15 V for the sensor and servo controller. When powering up the module, the DC-DC converter needs a peak current of about 1.5 A to start oscillating. The power supply should have a buffer capacitor or should be able to supply the 1.5 A per E-621 for at least 1 second. The inputs and outputs of the DC-DC converter are not connected internally. Using a unipolar power supply, we recommend connecting the negative supply at pin 18a and 18c with the Test GND at pin 14a and 14c. This provides a defined GND level and helps to minimize noise. Be sure to connect pin 14a and 14c to a protective ground! - If a DC-offset potentiometer is to be used, connect the wiper to pin 12c, the zero-offset contact (presumably CCW) to pin 22c, 14a or 14c (GND) and the other contact (CW) to pin 12a. Make sure the external pot is activated with J3 in position 1-2 - By connecting pin 28a on the main connector to pin 14a or 14c (GND), the E-621 is set to closed-loop operation (servo ON). In this case, switching to open-loop operation (servo OFF) is neither possible with DIP switch 3 on the front panel nor with the SVO command via the E-816 computer interface submodule ## 2.3 First Steps #### **CAUTION** Thermally stable systems have the best performance. For a thermally stable system, switch on the E-621 at least one hour before you start working with it. #### CAUTION If the piezo positioner starts oscillating (humming noise): In closed-loop operation, switch off the servo immediately. The load and / or the dynamics of operation probably differ too much from the setup for which the system was calibrated. In open-loop operation, stop the motion
immediately. Do not operate the piezo positioner at its resonant frequency even though the notch filter by default is also active in open-loop operation. Otherwise the piezo positioner could be irreparable damaged. - 1 Connect the E-621 to the supply power. Depending on your system configuration, consider the information in "Line Power and Fuses" on p. 10 or "Installation" on p. 11 - 2 Make sure the E-621 is switched off - 3 Make the DIP switch settings required for the control mode (analog or computer-controlled) and the servo mode (ON or OFF) you wish to use. See "Front Panel Elements" on p. 16 and "Modes of Operation" on p. 19 for details. #### Notes: The servo must be ON in analog mode, when you want to work with a computer-generated signal (e.g. from a DAQ board) and PI's drivers for NI LabVIEW (see step 5 below). To give the E-816 computer interface submodule complete control over the servo mode selection, DIP switch 3 on the E-621 front panel must be set to open-loop operation (= right). When installing the E-621 in a custom chassis, for servo mode selection via the E-816 furthermore make sure that pin 28a on the main connector is not grounded (i.e. not connected to pin 14a or 14c) - 4 Connect the piezo positioners/actuators to the proper E-621.SR units. If your system was calibrated by PI, the controllers and positioners are not interchangeable. Respect the assignment given by the serial numbers marked on the calibration label of the controller - 5 Connect a suitable signal source to the "ANALOG INPUT" SMB socket. Depending on the control-mode selection, this input signal is either used as control input (in analog mode), or as trigger signal for wave table output and triggered motion (in computer-controlled mode). See "Front Panel Elements" on p. 16 for signal details. In analog mode, the control input voltage can also be a computer-generated analog signal (e.g. from a DAQ board). You can use PI's drivers for NI LabVIEW from the PI software CD to generate that analog signal. Note: After installing the drivers, it is necessary to activate the analog functionality, see the Analog_Readme.txt file in the installation directory (C:\ProgramData\PI\LabVIEW). - 6 Optional: Connect a suitable measurement device to the "SENSOR MONITOR" SMB socket. This socket carries the filtered and processed sensor output value, with 0 to 10 V representing nominal travel range. See "User Electronics and Sensor Monitor Signal" on p. 24 for further specifications - 7 Switch on the E-621 - 8 Command motion of the connected piezo positioner/actuator: Analog mode: Change the control input signal on "ANALOG INPUT" in the range of 0 to 10 V Computer-controlled mode: Follow the instructions in "First Steps" in the E-816 Computer Interface Submodule User Manual If at the yellow "Overflow" LED glows in closed-loop operation (servo ON), then a zero-point adjustment is necessary. Follow the instructions for zero-point adjustment given in Section 4.1.1 on p. 26. To avoid an overflow of the amplifier in open-loop operation, do not exceed the allowable control input range. # 3. Operation ## 3.1 Front Panel Elements # NOTE All front-panel connections except of the USB lines are duplicated on the 32-pin main connector. Fig. 3: E-621.SR Front Panel #### Power LED, green Permanent glow indicates that the E-621 is powered on. #### Overflow LED, yellow Overflow signal, indicates power amplifier is so near the end of its range that it is no longer able to follow input changes properly (piezo voltage output outside of -30 V to 130 V range). If this LED glows in closed-loop operation (servo ON), a zeropoint adjustment is necessary. Follow the instructions for zeropoint adjustment given in Section 4.1.1 on p. 26. To avoid an overflow of the amplifier in open-loop operation, do not exceed the allowable control input range (see "ANALOG INPUT"). #### On Target LED, green On target signal from E-802 servo controller submodule, indicates distance from target less than ±0.19% of range #### **ANALOG INPUT** SMB coaxial, GND on outer line. Usage of this input line depends on the mode settings made with the "Settings" DIP switches (see below): - Analog mode: ANALOG INPUT is used as control input voltage which gives the target (either as voltage or position, depending on the servo mode; see below). The input signal should always be in the range of -2 to 12 V. Note that excursions to -3 or +13 V are possible but may cause overflow, especially with servo on, and reduce actuator lifetime, see "Lifetime of PICMA® Actuators" on p. 49 for details. - The control input voltage can also be a computergenerated analog signal (e.g. from a DAQ board). You can use Pl's drivers for NI LabVIEW from the PI software CD to generate that analog signal. See "Control Modes" on p. 19 for details - Computer-controlled mode: ANALOG INPUT is used as trigger input signal for wave table operation and triggered motion (Active HIGH; LOW: 0 to 0.5 V, HIGH: 3.0 to 5.0 V, maximum 10 V; max. freq. 400 Hz; min. width: 200 µs). See the User Manual for E-816 Computer Interface and Command Interpreter Submodule (PZ116E) for more information #### SENSOR MONITOR SMB coaxial, GND on outer line, 0 to 10 V on inner line Filtered and processed sensor output value, 0 to 10 V representing nominal travel range. ## Settings DIP switch block The ON position is on the left. | Switch | Function | |--------|---| | 1 | Usage of ANALOG INPUT socket as control input | | 2 | Control input given by the E-816 computer interface submodule installed in E-621 | | 3 | Servo mode selection: OFF (right) = servo off (open-loop operation)* ON (left) = servo on (closed-loop operation) | | 4 | Usage of ANALOG INPUT socket as trigger input | ^{*}To give the E-816 computer interface submodule complete control over the servo mode selection, DIP switch 3 must be set to open-loop operation (= right). When installing the E-621 in a custom chassis, for servo mode selection via the E-816 furthermore make sure that pin 28a on the main connector is not connected to pin 14a or 14c (i.e. the signal on pin 28a must not be LOW (0 V)) Switches 1, 2 and 4 determine the control mode (computer-controlled or analog) of the E-621 and hence the applicable control sources. See "Control Modes" on p. 19 for details | Switch | Computer-Controlled | Analog Mode | |--------|---------------------|-------------| | | Mode | | | 1 | OFF | ON | | 2 | ON | OFF | | 4 | ON | OFF | Unpredictable behavior may result if sw 1, 2 and 4 are set incompatibly. #### Zero potentiometer Trim pot accessible with small screwdriver for sensor zero-point adjustment. Readjustment may become necessary with time or if the load is changed. Do the adjustment with Servo OFF! See Section "Open-Loop Zero-Point Adjustment" on p. 26 for more details. #### **PZT** 2-conductor coaxial LEMO ERA.00.250 for piezo actuator drive voltage output. PZT ground is on the outer conductor (tied to case), PZT+ on the inner conductor. The drive voltage output is in the range of -30 to 130 V. #### **SENSOR** 4-conductor LEMO EPL.0S.304.HLN for sensor input. See Section 9.3.2 on p. 48 for wiring. #### RS-232 Serial connection to host PC. Sub-D 9 male, industry-standard RS-232. See the User Manual for E-816 Computer Interface and Command Interpreter Submodule (PZ116E) for more information. Universal Serial Bus (USB Mini-B (m) socket) for connection to host PC. See the User Manual for E-816 Computer Interface and Command Interpreter Submodule (PZ116E) for more information. ## 3.2 Modes of Operation **Control modes:** The E-621 can be operated in either analog mode or computer-controlled mode. The active mode determines the applicable control sources for the output voltage. See "Control Modes" below for more information. **Servo modes:** The current servo mode determines if the motion axis is driven in open-loop (servo OFF) or closed-loop (servo ON) operation. In closed-loop operation a servo loop participates in the generation of the control value for the output voltage. The servo loop thus maintains the current axis position, based on a given target position and the position feedback of the corresponding sensor. See "Servo Modes (ON / OFF)" below for more information. The individual control and servo modes can be combined arbitrarily. #### 3.2.1 Control Modes The current control mode of the E-621 determines the applicable control sources for the output voltage and hence for the axis motion. It is selected with the "Settings" DIP switches on the E-621 front panel. #### Analog mode: Activated with the following settings (ON position is on the left): 1 = ON, 2 = OFF, 4 = OFF The output voltage depends on the input voltage applied to the "ANALOG INPUT" SMB socket of the E-621. Control input from the E-816 computer interface submodule is ignored (i.e. move commands received via computer interface or from a running macro, trigger input or wave table output). The input signal should always be in the range of -2 to 12 V. Note that excursions to -3 or +13 V are possible but may cause overflow, especially with servo on, and reduce actuator lifetime, see "Lifetime of PICMA® Actuators" on p. 49 for details. The analog control input can be a computer-generated analog signal (e.g. from a DAQ board). You can use PI's drivers for NI LabVIEW from the PI software CD to generate that analog signal. Note: After installing the drivers, it is necessary to activate the analog functionality, see the Analog_Readme.txt file in the installation directory (C:\ProgramData\PI\LabVIEW). In analog mode, control input from the E-816 computer interface submodule is ignored (i.e. move commands received via computer interface or from a running macro, trigger input or wave table output). #### Computer-controlled mode: Activated with the following settings (ON position is on the left): 1 = OFF, 2 = ON, 4 = ON The E-816 computer
interface module installed in the E-621 controls the generation of the output voltage. Target values for the axis motion can be given by move commands (received via computer interface or from a running macro), trigger input or wave table output. The analog control input voltage on the "ANALOG INPUT" socket is ignored. #### Notes In analog mode, the E-816 accepts all commands just as in computer-controlled mode. The only difference between the modes is the control source selection. ## 3.2.2 Servo Modes (ON / OFF) The current servo mode determines if a motion axis is driven in open-loop (servo OFF) or closed-loop (servo ON) operation. The servo mode can be set as follows: - Using DIP switch 3 on the E-621 front panel: OFF (right) = servo off (open-loop operation) ON (left) = servo on (closed-loop operation) - Using pin 28a on the 32-pin main connector: Servo is on if pin 28a is connected to pin 14a or 14c (GND). In this case, switching to open-loop operation (servo OFF) is neither possible with DIP switch 3 on the front panel nor with the SVO command via the E-816 computer interface submodule. - By default and when installed in an E-50x.621 chassis from PI, pin 28a is not connected to pin 14a or 14c and hence set to servo off (open-loop operation) - Via SVO command sent over the communications interface or received from a macro running on the E-816. To give the E-816 complete control over the servo mode selection, DIP switch 3 on the E-621 front panel must be set to open-loop operation (= right). Furthermore make sure that pin 28a on the main connector is not grounded (i.e. not connected to pin 14a or 14c; the signal on pin 28a must not be LOW (0 V)). Using the SVO? command, you can check the last sent SVO setting. SVO? does not report the setting of DIP switch 3 and pin 28a. See E-816 User Manual for command descriptions #### **Notes** Servo control is implemented on a small PCB submodule (E-802.55). This submodule is included with the E-621 and comes already installed. The block diagram on p. 33 answers most questions about how the various elements interact with each other. The usage of the E-802 submodule depends on an on-board jumper, J1: With J1 in position 1-2 the E-802 is connected (factory default), and the servo mode can then be controlled by DIP switch 3, by pin 28a of the 32-pin main connector or by the E-816. If jumper J1 is in position 2-3 the E-802 submodule is completely bypassed no matter what the other settings. Slew-rate limitation and notch filtering remain on even when servo mode is switched off. They will only be deactivated if the E-802 servo controller submodule is bypassed with J1 in position 2-3. Normally, you do not need to change jumper J1. Access to J1 requires removing the E-621 module from the chassis. See "Components and Adjustment Elements" on p. 34 for more information. #### Closed-loop operation: Any control input (control voltage on "ANALOG INPUT", E-816 input like move commands and wave table output) is interpreted as target position. Based on this target position and on the position feedback of the corresponding sensor channel, the servo loop on the E-802 submodule generates the control value for the piezo output voltage. The servo loop thus maintains the axis position. Closed-loop operation offers both drift-free and hysteresisfree positioning as well as immunity to load variations. Pl's standard calibration procedure assures that the piezo actuator reaches its nominal expansion when that position is commanded. #### Open-loop operation: Any control input is interpreted as piezo voltage target. Open-loop operation omits the servo loop on the E-802 submodule, and the control input directly controls the piezo output voltage. The slew rate limitation and notch filter remain active (unless, of course, jumper J1 is in position 2-3). When servo-mode is OFF, the system works like a linear amplifier with the piezo operating voltage proportional to the control signal input. (The sensor electronics works independently, and outputs the current piezo position even in open-loop mode, provided a sensor is properly connected. Since there is some variation among different piezos of the same model, the voltage required to bring the piezo to its nominal expansion will differ.) ### Note Closed-loop operation can be activated using a start-up macro. See the E-816 User Manual for more information. ## 3.3 Networking on I²C Bus It is possible to command up to twelve E-621.SRs over a single RS-232 or USB interface from a single host PC. The E-621.SR connected to the RS-232 or USB link (the master) relays commands to the other units (slaves) on the network. Responses from the slaves are then relayed by the master back to the PC. The modules to be networked must be installed in the same chassis since networked units must have the I²C networking lines connected to each E-621 in parallel (pins 32a and 32c of the 32-pin main connector). The network bus lines are limited to a maximum length of 1 m and a maximum capacitance of 400 pF. With multiple E-625.CRs networking requires also sensor synchronization via pins 20a and 24a of the 32-pin main connector (see the E-621.CR User Manual PZ160E for details). It may be necessary to power-cycle the system for proper detection of the master unit (i.e. the E-621 directly connected to the host PC). For details regarding networking (e.g. channel name settings) see the User Manual of the E-816 computer interface module. ## 3.4 User Electronics and Sensor Monitor Signal If you are connecting your own electronics to the sensor monitor signal, make sure it has sufficient input capacitance to eliminate high-frequency interference. It may be necessary to add a 4.7 nF (ceramic NP0 or COC type) to the input connector. Use shielded cable if possible, otherwise make sure the lead pair is tightly twisted. Fig. 4: Electronics on Sensor Monitor line with required input capacitance # 4. Calibration If PI had sufficient knowledge of your application and you ordered your system components together, they will be preinstalled and preconfigured. Do not adjust potentiometers unnecessarily and be aware that many adjustment points are interdependent and effect both computer-controlled and analog operating modes. Reference to the block diagram (p. 33) can aid in understanding the scope of the various control elements. #### CAUTION E-621 modules are ESD-sensitive (electrostatic discharge sensitive) devices. Observe all precautions against static charge buildup before handling these devices. Avoid touching circuit components, pins and PCB traces. Discharge any static electricity you may have on your body by briefly touching a conductive, grounded object before you touch any electronic assembly. Pose PCBs only on conductive surfaces, such as ESD-safe transport containers (envelopes, foam). Electronic subassemblies must always be kept and transported/shipped in conductive packaging. Make sure that no conductive particles of any kind (metallic dust or shavings, broken pencil leads, loose screws) contact the device circuitry. Only the DIP switch block (S1) and the Zero potentiometer are accessible without removing the E-621 from the chassis. #### NOTE All front-panel connections except of the USB lines are duplicated on the 32-pin main connector. So you can use that pins instead of the front panel connections. See pinout on p. 47 for details. #### 4.1 Sensor Connection and Adjustment If you inform PI about your application, your E-621.SRs will be fully calibrated before being shipped. It is usually not necessary for you to do anything more than adjust the zero point before operating the system. #### CAUTION Calibration should only be done after consultation with PI, otherwise the internal configuration data may be destroyed by erroneous operation. Position sensors are connected to the "SENSOR" socket on the E-621 front panel, see the wiring diagram on p. 48. The E-621.SR provides DC sensor processing (it is equipped with the E801B1008 sensor submodule) and is for SGS sensors. The output from the sensor-processing submodule is an analog signal that is directly proportional to the piezo's expansion and is available at "SENSOR MONITOR" on the front panel. See the "E801B1008 Sensor Processing Submodule" section, starting on p. 36 for more details on the sensor submodules. As seen in the block diagram, the sensor signal goes through the E801B1008 sensor readout electronics and then branches to the E-816 computer-interface submodule and the E-802 servo controller submodule. Since the servo controller and computer interface submodules see "copies" of the sensor signal, it is important that the zero point and gain in the sensor circuitry be properly adjusted. The zero point is especially likely to need correction. There are offset (zero-point) and range adjustment potentiometers on the E801B1008 sensor submodule. In addition to the adjustments on the analog side, there are digital offset and range corrections on the E-816 computer interface submodule. The A/D converter on the E-816 is always precalibrated and its offset and gain values stored in EPROM are not customer modifiable. If the hardware adjustments are exact, then the Osen (sensor offset) digital correction factor should be set to 0 and Ksen, the sensor coefficient, should be set to a value equal to the travel range (in μ m) divided by 10 volts (the nominal sensor readout electronics output range). See the E-816 User Manual for details. #### 4.1.1 Open-Loop Zero-Point Adjustment Zero-point calibration has the following goals: Make the full travel range available: If the electrical zero point is adjusted properly, the full output voltage range of the amplifier can be used. This prevents overflow conditions from occurring Preserve the piezo actuators in the mechanics: The point of zero sensor readout should correspond to zero or a (small) negative output voltage. This technique can reduce the average applied voltage without loss of
displacement and thereby increase piezo lifetime There might be some small deviation of the electrical zero-point caused by thermal drift or changes in mechanical loading. Let the system warm up for several minutes before setting the zero point. This procedure can be carried out either in computer-controlled or in analog mode. If you use analog mode, you will need a voltmeter. In computer-controlled mode the voltmeter is helpful but not required. Before starting, install the positioner(s) with the same loads and in the same positions as they will have in your application. | OPEN-LOOP
SENSOR
ZERO POINT | Computer-Controlled
Mode | Analog Mode | |--|--|---| | Set DIP switches on the front panel for operating mode | sw1 OFF, sw2 ON, sw4 ON;
connect RS-232 or USB cable to
this unit | sw1 ON, sw2 OFF, sw4 OFF | | 2. Power up | After power-on, establish communications, e.g. with PITerminal | | | Set up for servo-off operation | Send
SVO A 0
where A is the axis identifier.
Make sure that servo is not set
on with DIP switch 3 or pin 28a | Set DIP switch 3 OFF. Make sure that servo is not set on with pin 28a or SVO command. | | Exercise the piezo over the nominal expansion range | Command voltages from 0 to 100 V, e.g. with SVA command | Apply an analog signal in the range of 0-10 V to "ANALOG INPUT" (DC offset must be 0 or OFF (J3 2-3)) | | 5. Command
0 V | Command a voltage of 0 volts by sending SVA A 0 where A is the axis identifier | Put 0 V on "ANALOG INPUT" | | 6. Read sensor | Send POS? A where A is the axis identifier, or read the value at the "SENSOR MONITOR" SMB socket on the front panel with a voltmeter | Read the value at the
"SENSOR MONITOR" SMB
socket on the front panel with a
voltmeter | | 7. Correct zero | Adjust the Zero potentiometer on the front panel so that the sensor-monitor signal is +1 V | | After successful zero-point adjustment, the "Overflow" LED should no longer glow in closed-loop operation. Permanent glow of this LED inspite of zero-point adjustment may indicate hardware failure. To avoid an overflow of the amplifier in open-loop operation, do not exceed the allowable control input range. #### 4.1.2 Open-Loop Sensor Range Adjustment The object of open-loop sensor range calibration is to assure that when the piezo is at nominal expansion the sensor will report the nominal-expansion position. (Note that the voltage required to cause the piezo to expand to its nominal value will not be exactly 100 V, but somewhere in the 85-105 V range.) All piezo positioning systems ordered together with a piezo translator are delivered with performance test documents to verify the system performance. The system ordered is calibrated in our labs prior to shipment. Normally there is no need for the customer to perform a full calibration. Only if the piezo, the sensor, extension cable or the mechanical setup is changed, may new calibration be necessary. Open-loop sensor range adjustment requires an external measuring device with 0.1 µm resolution and a 32-pin extension connector (P-895.00, not included). #### DANGER Procedures which require removing the E-621 module from the chassis should be carried out by authorized, qualified personnel only. Disconnect the chassis from power when removing modules, and when resetting internal switches or jumpers. When a module removed from the chassis must be operated, use a 32-pin extension connector (P-895.00, not included). Voltages of up to 130 V can be exposed. Do not touch internal conductors. | SE | PEN-LOOP
NSOR
.NGE | Computer-Controlled
Mode | Analog Mode | |-----|--|--|--| | 1. | Make
adjustment
elements
accessible | Remove E-621 from the chassis and connect via P-895.00 extension connector (qualified, authorized personal only) | Remove E-621 from the chassis
and connect via P-895.00
extension connector (qualified,
authorized personal only) | | 2. | Set DIP
switches on
the front
panel for
operating
mode | sw1 OFF, sw2 ON, sw4 ON,
connect RS-232 or USB cable
to this unit | sw1 ON, sw2 OFF, sw 4 OFF | | 3. | Power up | After power-on, establish communications, e.g. with PITerminal | | | 4. | Set up for
servo-off
operation | Send
SVO A 0
where A is the axis identifier.
Make sure that servo is not set
on with DIP switch 3 or pin
28a | Set DIP switch 3 OFF. Make sure that servo is not set on with pin 28a or SVO command. | | 5. | Exercise the piezo over the nominal expansion range | Command voltages from 0 to 100 V, e.g. with SVA command | Apply an analog signal in the range of 0-10 V to "ANALOG INPUT" (DC offset must be 0 or OFF (J3 2-3)) | | 6. | Command
0 V | Command a voltage of 0 volts by sending SVA A 0 where A is the axis identifier | Put 0 V on "ANALOG INPUT" | | 7. | Check/adjust
zero-point | Send POS? A where A is the axis identifier, or read the value at the "SENSOR MONITOR" SMB socket on the front panel with a voltmeter. If necessary, adjust the zero point as described in Section 4.1.1. | Read the value at the "SENSOR MONITOR" SMB socket on the front panel with a voltmeter. If necessary, adjust the zero point as described in Section 4.1.1 | | 8. | Expand the piezo to its nominal expansion as indicated by external gauge | Use a series of commands like
SVA A 90 followed by
repeated SVR A 1
(A is the axis identifier) | Increase analog input voltage slowly | | 9. | Adjust sensor gain | Adjust the sensor gain on the sensor submodule E801B1008 until the value at the "SENSOR MONITOR" SMB socket on the front panel is 10 V. See the User Manual of the E801B1008 Sensor Processing Submodule for component designation and location. | | | 10. | Recheck | Recheck It may be necessary to repeat the last steps until stable readings are obtained. | | #### 4.1.3 Servo-Control Static Gain Calibration The object of servo-control static gain adjustment is to assure that the piezo moves to the nominal travel range end position when that position is commanded in servo-on mode (in analog mode, 10 V control input). You will need an external measuring device and a 32-pin extension adapter to access the potentiometers mentioned while the unit is in operation (P-895.00, not included). Since the servo controller uses the sensor signal as a basis, the analog sensor zero point and open-loop range should be adjusted before the static servo-gain is set. This procedure can be carried out with the unit in either computer-controlled or analog mode. If done in analog mode, you will also need a highly accurate voltage source and meter. ## **DANGER** Procedures which require removing the E-621 module from the chassis should be carried out by authorized, qualified personnel only. Disconnect the chassis from power when removing modules, and when resetting internal switches or jumpers. When a module removed from the chassis must be operated, use a 32-pin extension connector (P-895.00, not included). Voltages of up to 130 V can be exposed. Do not touch internal conductors. | CLOSED-LOOP
SERVO
STATIC GAIN | | Computer-Controlled
Mode | Analog Mode | | |-------------------------------------|---|---|--|--| | 1. | Make
adjustment
elements
accessible | Remove E-621 from the chassis and connect via P-895.00 extension connector (qualified, authorized personal only) | Remove E-621 from the chassis and connect via P-895.00 extension connector (qualified, authorized personal only) | | | 2. | Set DIP
switches on
the front
panel for
operating
mode | sw1 OFF, sw2 ON, sw 4 ON,
connect RS-232 or USB cable
to this unit | sw1 ON, sw2 OFF, sw4 OFF | | | 3. | Power up | After power-on, establish communications, e.g. with PITerminal | | | | 4. | Set servo ON | Send
SVO A 1
where A is the axis identifier | Set DIP switch 3 ON or connect
pin 28a to pin 14a or 14c | | | 5. | Check for oscillation | If the piezo goes into oscillation, you will have to perform the dynamic adjustments (especially notch filter) first. | | | | 6. | Set external gauge to 0 | Send MOV A 0 where A is the axis identifier, and set external gauge to 0 | Put 0 V analog input on the "ANALOG INPUT" SMB socket (DC offset must be to 0 or OFF (J3 2-3)) and set external gauge to 0. | | | 7. | Command a
position equal
to the end of
the nominal
travel range | e.g. send MOV A 100 where A is the axis identifier The piezo should expand to the nominal expansion, and the output on the "SENSOR MONITOR" SMB socket should be exactly 10 V. Verify this with the external gauge and meter | Using an appropriately accurate source apply +10.0000 V to the analog input. The piezo should expand to the nominal expansion, and the
output on the "SENSOR MONITOR" SMB socket should be exactly 10 V. Verify this with the external gauge and meter | | | 8. | Adjust sensor
monitor
output | To adjust the "SENSOR MONITOR" output to exactly 10.000 V use the GAIN Fine Adjust potentiometer on the servo controller submodule, E-802.55 | | | | 9. | Adjust piezo expansion | | | | | 10 | 10. Repeat the last steps several times until stable results are obtained | | | | This adjustment can only be done accurately for one control mode (analog mode or computer-controlled mode). If you use the unadjusted mode, 1% error in the sensor monitor output voltage can be expected. ## 4.2 Servo-Control Dynamic Characteristics The object of servo-control dynamic calibration is to regulate behavior such as overshoot, ringing and settling time. The servo controller submodule also has a notch filter which makes it possible to eliminate vibration at the mechanical resonant frequency of the system. Dynamic calibration procedures require an oscilloscope (a digital storage oscilloscope is recommended), frequency generator to output square and sine functions from 1Hz to 1 kHz and an ohmmeter with a range from 0.1 to 100 k-ohm and, depending on the installation, a 32-pin extension adapter to allow access to the trim potentiometers while the board is in operation. ## **DANGER** Procedures which require removing the E-621 module from the chassis should be carried out by authorized, qualified personnel only. Disconnect the chassis from power when removing modules, and when resetting internal switches or jumpers. When a module removed from the chassis must be operated, use a 32-pin extension connector (P-895.00, not included). Voltages of up to 130 V can be exposed. Do not touch internal conductors. The dynamic calibration procedures are described in the User Manual for the E-802.55 servo controller submodule (execution in analog mode). Using the wave table of the E-816 computer interface module it should also be possible to perform them in computer-controlled mode without an external frequency generator. Note that the notch filter and slew rate limiter are not deactivated by the servo-off line. Resetting the notch filter frequency in this mode (open-loop via servo-off signal) can cause the piezo output voltage to change by as much as 5%. To deactivate the notch filter and slew rate limiter, use jumper J1 in position 2-3 to remove the E-802 from the circuit entirely (see block diagram below). # 5. Electronics Details ## 5.1 E-621.SR Block Diagram Fig. 5: E-621.SR Block Diagram #### NOTE: Input signals on the analog input line (front panel SMB connector and main connector pin 10c) and the position of the external DC-offset potentiometer (if activated) are combined in the preamplifier stage. Depending on the DIP switch settings, the resultant signal will be used either as control input, or as digital input for triggering. If the signal on the SMB socket is to be used as trigger, DC offset must be deactivated or set to 0. ## 5.2 Components and Adjustment Elements See also the E801B1008 and E-802 User Manuals for adjustment elements on those submodules which are not described here. Fig. 6: E-621.SR (viewed from component side, with bottom edge on top) component locations; adjustment elements shown in default settings ### 5.2.1 Jumpers Jumpers are also shown on the block diagram on p. 33. - J1 Servo mode, notch filter and slew rate bypass - 1-2: Factory setting: the servo-control mode depends on the setting of DIP switch 3 on the E-621 front panel, on pin 28a of the 32-pin main connector or on the SVO command settings. The slew rate limitation and notch filter are always ON. - 2-3: E-802.55 submodule with servo control, slew rate limitation and notch filter is completely bypassed. No other combination of settings or commands can activate it. - <u>J3</u> External DC offset potentiometer (not included): - 1-2 activated (do not activate without wiring to the 32-pin main connector, p. 47) - 2-3 deactivated J4 Type of sensor activation/processing: - 1-2 DC (SGS), - 2-3 AC (do not use) Must match the type of sensor-processing submodule installed (E801B1008 for SGS) <u>JP107 - JP109</u> shift the voltage range of the sensor processing circuitry. They must remain as set at the factory, i.e. for use with an E-802 servo controller submodule (positive polarity, 0-10 V) | Position of the Jumper
JP107 | -
0
0
+ | 3 Q D + | |---------------------------------|------------------|----------------| | Polarity of Output | Positive | Negative | | Typical Application | Using with PI's position control electronics | Using as a position detector | Special application | |--|--|------------------------------|---------------------| | Position of Jumpers
JP108 and JP109 | JP108
 | JP108 © © 0 DP109 © © 0 | 3 000 1 3 000 1 | | Voltage range of output | 0V ~ 10V | -5V ~ +5V | -10V ~ 0V | Fig. 7: E-621.SR sensor processing output settings ### 5.2.2 Switches <u>DIP switch block S1</u> is accessible through the front panel. (Do not confuse with the S1 damping control on the E-802 submodule, described in the E-802 User Manual). | sw1
(left | ON (down) | Signal on "ANALOG IN/WTT" line used as analog input | |--------------|-----------|---| | switch) | OFF (up) | Signal on "ANALOG INPUT" line not used as analog input | | sw2 | ON (down) | Control input from E-816 computer interface submodule used | | | OFF (up) | Control input from E-816 computer interface submodule not used | | sw3 | ON (down) | Servo on | | | OFF (up) | Servo off; can be switched on by E-816 via SVO command or by grounding pin 28a of the 32-pin main connector | | sw4 | ON (down) | Signal on "ANALOG INPUT" line used as trigger for wave table output or triggered motion | | | OFF (up) | Signal on "ANALOG INPUT" line not used as trigger for wave table output or triggered motion | Unpredictable behavior may result if sw 1, 2 and 4 are set incompatibly. For admissible combinations, see "Front Panel Elements" on p. 16. #### 5.2.3 Potentiometers The calibration procedures involve setting a number of trim pots. The P406 Zero potentiometer is accessible through a hole in the front panel. Others are located on the main board or on submodules. See also the User Manual of the respective submodule for more details. ## 5.3 E801B1008 Sensor Processing Submodule Sensor excitation and processing is implemented on a small, replaceable submodule. SGS versions have an E801B1008 submodule which provides DC sensor excitation and readout. Fig. 8: E801B1008 sensor excitation and readout submodule. Note and respect component-side orientation Should you ever need to make any adjustments on the sensor submodule, refer to the E801B1008 User Manual for more details. ### 5.4 E-802 Servo Controller Submodule The E-802 is a small plug-in PCB that processes the control signal for the amplifier driving the piezoelectric translators. Slew rate limitation, notch filter and servo-control loop are all implemented on the E-802. The servo-loop logic compares the control voltage input and the signal of the position sensor to generate the amplifier control signal using an analog proportional-integral (P-I) algorithm. Fig. 9: E-802 servo controller submodule location on E 621. Note and respect component-side orientation. For calibration procedures, see "Servo-Control Static Gain Calibration", p. 30 and "Servo-Control Dynamic Characteristics", p. 32. The E-802 submodule is described in detail in a separate user manual. # 6. Troubleshooting Positioner does not move Cable not connected properly → Check the connecting cable(s) Positioner or positioner cable is defective → If a working positioner of the same type is available, exchange the defective positioner to test a new combination of E-621.SR and positioner. Since positioner and E-621.SR always form a calibrated system, the performance with the new positioner will probably be lower than with the original positioner. If the new positioner is to be used permanently and in normal operation, a new calibration is required. See "Calibration" on p. 25 for details. Incorrect control mode of the piezo channel → The applicable control sources for the axis motion depend on the current control mode (analog or computer-controlled mode, see "Control Modes" on p. 19 for details). In analog mode, move commands (received via interface or from a running macro), trigger input and wave table output are ignored and may provoke an error message. In computer-controlled mode, the axis motion can be commanded by move commands received via interface or from a running macro, by trigger input and wave table output. Respect the prioritization of the individual sources (see the User Manual of the E-816 computer interface submodule for details). Check the DIP switch setting on the front panel for the current control mode ("Front Panel Elements", p. 16). No control signal applied or signal out of range → In analog mode, apply an analog control signal to the "ANALOG INPUT" SMB socket to command the axis motion. The signal should always be in the range of -2 to 12 V (excursions to -3 or +13 V may cause overflow, especially with servo on, and reduce actuator lifetime). If you generate the analog signal with a DAQ board in a PC running LabVIEW and using PI's drivers for NI LabVIEW, check the driver and the DAQ board for proper operation. Move commands or wave table commands may provoke errors and are ignored. ### Wrong command or wrong syntax → Check the error code with the ERR? command. Note that the response to this command contains only the error code of the master unit. See the ERR? description in the User Manual of the E-816 computer interface submodule for the complete error reference. ### Wrong axis commanded → Check if the correct axis identifier is used
and if the commanded axis is that of the desired positioner (axis identifier also required with single-axis systems!) ### Incorrect configuration → Check the parameter settings on the E-816 computer interface module with the SPA? command. The high voltage output of the E-621.SR is deactivated → If the internal temperature goes out of range (75 °C or higher), the high voltage output of the E-621.SR will be deactivated. In that case the mechanics will no longer move. When the internal temperature falls below 60 °C, the high voltage output is reactivated automatically. ### How to avoid overheating: Keep the ambient temperature at a noncritical value: Note that the difference between ambient temperature and internal temperature of the E-621.SR normally is about 20 Centigrade (36 Fahrenheit) degrees. Place the system in a location with adequate ventilation. Allow at least 10 cm (4 inches) clearance from the top and the rear of the unit and 5 cm (2 inches) from each side. If this is not possible, keep the ambient temperature low. When using the wave table output, it is recommended to reduce the frequency and/or the amplitude and/or the output duration to avoid overheating. Communication with controller does not work Communication cable is wrong or defective → Check cable. Does it work properly with another device? For RS-232, a null-modem cable must be used. The interface is not configured correctly → With the RS-232 interface, check port and baud rate (set via BDR command). The serial port on the E-816 is preset to the following parameters: 115,200 baud, 8 data bits, 1 stop bit, no parity, RTS/CTS. It is recommended that the host PC have a "genuine" RS-232 interface on board. If the host PC uses a USB-to-serial adapter instead, data loss could occur during communication, especially when transferring large amounts of data. → If you use the USB interface and after switching on the E-621.SR a dialog appears with the message that the driver for the hardware is missing: Install the USB driver from the PI software CD. The installation files for the USB drivers are located on the CD in the directory \SingleSetups. Controller was power-cycled or rebooted → With USB connections, communication can not be maintained after the E-621.SR is power-cycled or the E-816 digital operation module is reset. The connection must then be closed and reopened. Another program is using the interface → Close the other program. Specific software has problems → See if the system works with some other software, e.g. a terminal or development environment. You can, for example, test the communication by simply starting a terminal program, e.g. PITerminal, and entering *IDN?. Note that multi-character commands are transferred as terminated by a LF (line feed) character and are executed only after the LF is received. Unsatisfactory system performance The sensor values are not reliable, and the whole system is instable. → Only thermally stable systems can have the best performance. For a thermally stable system, power on the E-621.SR at least one hour before you start working with it. The positioner starts to oscillate or shows nonsatisfying settling behaviour. → Your system will be fully calibrated before being shipped. But due to load changes in the application, some calibration settings may no longer be suitable. See "Servo-Control Dynamic Characteristics" on p. 32 for details. Overflow LED glows The output of the amplifier is being clipped at one of its limits. → Try to adjust the sensor reading window as described in "Open-Loop Zero-Point Adjustment" on p. 26 (a small deviation of the electrical zero-point may be caused by thermal drift or changes in mechanical loading). Adjustments to the zero point should not exceed ±10% of the positioner travel. After successful zero-point adjustment, the "Overflow" LED should no longer glow in closed-loop operation. To avoid an overflow of the amplifier in open-loop operation, do not exceed the allowable control input range. Permanent glow of the "Overflow" LED inspite of zero-point adjustment may indicate hardware failure. Contact your Physik Instrumente Sales Engineer or write service@pi.de. Custom software accessing PI drivers does not run. Wrong combination of driver routines/Vis → Check if system runs with Terminal program. If so, read the information in the corresponding manual for the PC software and compare the sample code on the PI software CD with your program code. ## 7. Customer Service For inquiries and orders, contact your PI sales engineer or send us an email (mailto:service@pi.de). If you have any questions concerning your system, provide the following information: - Product codes and serial numbers of all products in the system - Firmware version of the controller (if applicable) - Version of drivers and / or host software (if applicable) - Operating system on host PC (if applicable) If possible: Take photographs or make videos of your system that can be sent to our customer service department if requested. # 8. Old Equipment Disposal In accordance with EU directive 2002 / 96 / EC (WEEE), as of 13 August 2005, electrical and electronic equipment may not be disposed of in the member states of the EU mixed with other wastes. To meet the manufacturer's product responsibility with regard to this product, Physik Instrumente (PI) GmbH & Co. KG will ensure environmentally correct disposal of old PI equipment that was first put into circulation after 13 August 2005, free of charge. If you have such old equipment from PI, you can send it to the following address postage-free: Physik Instrumente (PI) GmbH & Co. KG Auf der Römerstr. 1 76228 Karlsruhe, Germany # 9. Technical Data ## 9.1 Specifications | | E-621.SR | |--------------------------------------|--| | Function | Piezo Amplifier / Servo Controller | | Axes | 1 | | Sensor | | | Servo characteristics | P-I (analog), notch filter | | Sensor type | SGS | | Amplifier | | | Control input voltage range | -2 to 12 V | | Min. output voltage | -30 to 130 V | | Peak current, 50 ms | 120 mA | | Average output current | 60 mA | | Current limitation | Short-circuit-proof | | Noise, 0 to 100 kHz | 0.8 mVrms | | Voltage gain | 10 ±0.1 | | Input impedance | 100 kΩ | | Interfaces and operation | | | Interface / communication | USB, RS-232 (9-pin Sub-D connector, 9.6 - 115.2 kBaud), 24-bit A/D and 20-bit D/A resolution | | Piezo connector | LEMO ERA.00.250.CTL | | Sensor connection | LEMO EPL.0S.304.HLN | | Control input / trigger input socket | SMB | | Sensor monitor socket | SMB | | | E-621.SR | |-----------------------------|---| | Controller network | up to 12 channels | | Command set | PI General Command Set (GCS) | | User software | PIMikroMove | | Software drivers | NI LabVIEW drivers, DLLs | | Supported functionality | Wave table with 256 data points, external trigger, 16 macros | | DC Offset | External potentiometer (not included), adds 0 to 10 V to the analog input | | Miscellaneous | | | Operating temperature range | +5 to +50 °C
(10% derated over 40 °C) | | Overheat protection | Deactivation at 75 °C | | Dimensions | 7HP/3U | | Mass | 0.6 kg | | Operating voltage | 12 to 30 V DC, stabilized | | Current consumption | 2 A | | Chassis Model | E-500.621 | E-501.621 | |----------------------|------------------------------|------------------------------| | E-621 modules (max.) | 12 | 4 | | Operating voltage | 100 to 240 VAC, 50-60 Hz | 100 to 240 VAC, 50-60 Hz | | Dimensions | 450 x 132 x 296 mm + handles | 236 x 132 x 296 mm + handles | # 9.2 Frequency Response Diagram Fig. 10: E-621 open-loop frequency response with various piezo loads. Values shown are capacitance in μF ## 9.3 Pin Assignments ### 9.3.1 32-Pin Main Connector Because the DIN 41612 connector standard includes types with more pins, the 32 pins of the "D" version all carry even number designations and are in rows "a" and "c". | Pin | Function | Pin | Function | |-------------|-------------------------------|-----|--| | 2a | PZT output | 2c | PZT output | | 4a | PZT GND | 4c | PZT GND | | 6a | RS-232/RTS | 6c | RS-232/CTS | | 8a | Internal use | 8c | RS-232/RX | | 10a | RS-232/TX | 10c | Analog input / trigger input (use depends on the settings of DIP switches 1 and 4) | | 12a | Pot 10 kOhm
(-10 V) | 12c | Pot wiper | | 14a | Pot 10 kOhm
(GND)*** | 14c | Pot 10 kOhm (GND), also Test GND*** | | 16a | +VCC supply | 16c | +VCC supply | | 18a | -VCC supply | 18c | -VCC supply | | 20 a | Internal use | 20c | Internal use | | 22a | Monitor sensor | 22c | GND for Sensor, Test,
Analog In | | 24a | Internal use | 24c | Sensor excitation | | 26a | Overflow (TTL, active-low) | 26c | Sensor inverting input | | 28a | Servo ON/OFF select* | 28c | Sensor non-inverting input | | 30a | GND for RS-232 | 30c | GND for sensor excitation | | 32a | I ² C SCL-signal** | 32c | I ² C SDA signal** | $^{^*}$ 0 V = LOW, 5 V = HIGH, Active LOW (LOW = servo ON; default is HIGH). Servo is on if pin 28a is connected to pin 14a or 14c (GND). In this case, switching to open-loop operation (servo OFF) is neither possible with DIP switch 3 on the front panel nor with the SVO command via the E-816 computer interface submodule. ^{**}If E-621s are networked outside a single E-50x.621 chassis, the SCL and SDA bus lines are limited to a maximum length of 1 m and a maximum capacitance of 400 pF. ^{***}Pins 14a and 14c should be connected to a protective ground ## 9.3.2 Strain Gauge Sensor Wiring Fig. 11: Pin configurations and wiring for various different positioners # 10. Appendix ### 10.1 Lifetime of PICMA® Actuators The following factors can have an impact on the actuator lifetime and must be considered: - Applied voltage - Temperature - Relative humidity The
effect of each individual factor on the lifetime can be read off the diagrams shown below. The lifetime calculated in hours simply results as the product of all three values read off the diagrams. The impact of the applied voltage is particularly important. With decreasing voltage the lifetime increases exponentially. This must always be taken into consideration in an application. The recommended maximum range of the control input voltage for E-621 therefore is -2 to 12 V, resulting in a piezo voltage range of -20 to 120 V (in open-loop operation). A control input range of -3 to 13 V is possible (results in -30 to 130 V piezo voltage in open-loop operation), but will reduce the actuator lifetime accordingly. Fig. 12: Interdependency between the mean MTTF of a PICMA® actuator and the value of the voltage applied Fig. 13: Interdependency between the mean MTTF of a PICMA® actuator and the ambient temperature Fig. 14: Interdependency between the mean MTTF of a PICMA® actuator and the relative humidity ## Example The simple formula MTTF = $A_U * A_T * A_F$ provides a quick estimate of the reliability in hours. For example, the values for 75% RH ($A_F=14$), 100 VDC ($A_U=75$) and 45 °C ($A_T=100$) result in an approximate MTTF of 105,000 h, i.e. more than 11 years (see markings on the diagrams). Read "Piezo Technology - Piezoceramic Components & Actuators" on our website for detailed information. ## 10.2 European Declarations of Conformity For the E-621.SR, Declarations of Conformity have been issued in accordance with the following European regulations: Low Voltage Directive (LVD) EMC Directive RoHS Directive The applied standards certifying the conformity are listed below. Safety (Low Voltage Directive): EN IEC 61010-1 ■ EMC: EN 61326-1 ■ RoHS: EN IEC 63000